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"The best that most of us can hope

to achieve in physics is simply

to misunderstand at a deeper level."

Wolfgang Pauli



Abstract

This work aims to propose a user interface for a reconfigurable linear optical quantum

computing (LOQC) circuit. In the first chapter, an insight about the features of quan-

tum computing together with advantages and disadvantages of the possible approaches

is provided. In the second chapter, an overview of quantum information processing and

the main quantum gates are introduced. The following part provides a description of

the building blocks of linear optical quantum computing circuits. Then, in the fourth

chapter, the practical implementation of a user interface for controlling a LOQC circuit

is presented. Finally, conclusions and possible future developments are drawn up.

Keywords:

Quantum optics, Quantum computing, Optical interferometry, Phase shifters, Beam

splitters, Linear optical quantum computing.
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Chapter 1

Introduction

Quantum computing has attracted much attention over the years, mostly because of its

promise of super-fast integer factorization. There are many different architectures for

quantum computers based on many different physical systems. These include atom and

ion-trap quantum computing, superconducting charge and flux qubits, nuclear mag-

netic resonance (NMR), spin and charge based quantum dots, nuclear spin quantum

computing, and optical quantum computing. All these systems have their own advan-

tages in quantum information processing. However, even though there may now be a

few front-runners, no physical implementation seems to have a clear edge over others

at this point.

Figure 1.1: Quantum computer
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Chapter 1. Introduction

In the early 1980’s, Richard Feynman showed that there are fundamental limitations in

trying to perform simulations of complex quantum systems on conventional computers,

regardless of their size or speed [1]. He noted, however, that these problems could be

overcome, at least in principle, by building computers based on quantum mechanics

instead of classical physics. One may naturally wonder if these “quantum computers”

would be useful for other applications, assuming that they could eventually be built.

The answer was shown to be “yes” when, nearly a decade later, Peter Shor discovered

a quantum computing algorithm for efficient factorization of large integers – a prob-

lem that has no efficient solution on conventional computers and forms the basis of

many secure communications protocols [2]. After that, it was shown that a quantum

computer could also be used to search an unstructured database much faster than any

conventional computer. Due to these critical theoretical developments, there has been

a recent explosion of experimental work aimed towards building a quantum computer.

Researchers in many different areas of physics are actively pursuing a variety of methods

to accomplish this challenging goal.

Figure 1.2: Examples of linear optical quantum circuits
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Chapter 1. Introduction

Among possible implementations for quantum information processing (QIP) and quan-

tum computation, optical quantum systems are prominent candidates, since they link

quantum computation and quantum communication in the same framework.

Quantum computing with linear quantum optics, the subject of this work, has the

advantage that the smallest unit of quantum information (the photon) is potentially

free from decoherence: the quantum information stored in a photon tends to stay there

[3]. In this framework, superpositions of quantum states can be easily represented,

transmitted and detected using photons.

In the optical approach, quantum bits, or “qubits”, of information are represented by the

quantum state of single photons. For example, the logical value 0 can be represented

by a horizontally polarized photon, while the logical value 1 can be represented by a

vertically polarized photon. Alternatively, 0 and 1 could be represented by the presence

of a single photon in one of two optical fibers [4].

Figure 1.3: Information coded in polarization or spatial modes

Linear elements of optical systems may be the simplest building blocks to realize quan-

tum operations and quantum gates. Each linear optical element applies a unitary trans-

formation on a finite number of qubits and there are systems of finite linear optical

elements to constructs linear optics networks, which can realize any diagram based on

3



Chapter 1. Introduction

the quantum circuit model (figure 1.2).

The primary advantage of an optical approach to quantum computing is that it would

allow quantum logic gates and quantum memory devices to be easily connected together

using optical fibers or wave-guides in analogy with the wires of a conventional computer.

This allows a modularity that is not normally available in other approaches. For exam-

ple, the transfer of qubits from one location to another in ion-trap or NMR systems is

a very complex process. Another great advantage is operational temperature, that can

be normal room temperature, while in other approach the systems need to be cooled to

very low temperature not be affected by noise.

The main drawback of optical quantum computing is introducing interactions among

photons, which may become an issue: this can be circumvented by using an exponen-

tially growing number of optical modes, but this is by definition not scalable.
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Chapter 2

Quantum computing principles

The power of quantum computing is related to the fact that quantum mechanics allows

the qubits to be in states that do not correspond to specific values of 0 or 1. The basic

working principles of this kind of computing will be described hereafter.

2.1 Qubits

The quantum analogue of a conventional bit, a qubit, has rather more freedom. It lives

in a two-dimensional Hilbert space, with a state of the following form:

|ψ⟩ = α|0⟩+ β|1⟩ (2.1)

where α and β, are two complex numbers whose squares correspond to the probability

of measuring a value of 0 or 1. In this equation it seems that there are four degrees of

freedom (as α and β are complex numbers), but one is removed by the normalization

constraint |α|2 + |β|2 = 1. So, the parameters can be changed in:

α = eiδ cos θ
2

β = ei(δ+φ) sin θ
2

(2.2)

Additionally, as for a single qubit the global phase factor can be neglected, only two

degrees of freedom remain:
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2.1. Qubits

α = cos θ
2

β = eiφ sin θ
2

(2.3)

and the state vector becomes:

|ψ⟩ = cos θ
2 |0⟩+ eiφ sin θ

2 |1⟩ (2.4)

In contrast to classical bits (which always have a definite value of either 0 or 1) the

qubits can, in some sense, behave as if they had the values of 0 and 1 at the same

time. There are many physical quantum systems that can be considered for use as

qubits. For example, a single two-level atom in its ground state could correspond to

a 0, while the same atom in its excited state would correspond to a 1. In quantum

optics, photon polarization or presence in different spatial modes (in fiber optics) can

be physical representations of qubits.

Figure 2.1: Bloch sphere

In the space represented in figure 2.1, which is known as Bloch sphere, a conventional

bit can be placed only on the poles, while a qubit can be anywhere on the surface of the

sphere (or sometimes inside, if it does not represent a pure state, but a mixed state).

States such as in equation 2.1 are superposition states and have amplitudes for |0⟩ and

|1⟩ at the same time.
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2.1. Qubits

A set, or register, of n conventional bits can be in just one of its 2n possible different

states at any particular time. In sharp contrast, a register of n qubits can be in a

superposition of all possible conventional register states at the same time, with 2n

amplitudes. Clearly, if it is possible to operate, or compute, simultaneously with all the

amplitudes of a quantum register, there is the possibility of massive parallel computation

based on quantum superpositions.

A useful tool for dealing with quantum states are density matrices, as state vectors can

only represent pure states, while matrices can also represent mixed states. Mixed states

can arise in two different situations: when the preparation of the system is not fully

known or when a physical system is entangled with another one. The general definition

of a density matrix is:

ρ =
∑
i

pi|ψi⟩⟨ψi| (2.5)

where 0 ≤ pi ≤ 1 and
∑
pi = 1.

Considering the Pauli matrices (including the identity I):

σ0 = I =

1 0

0 1

 σx =

0 1

1 0



σy =

0 −i

i 0

 σz =

1 0

0 −1


(2.6)

an arbitrary state for a qubit can be written as a linear combination of these matrices,

as:

ρ =
1

2
(I + rxσx + ryσy + rzσz) (2.7)

where rx, ry and rz are real numbers, and for pure states r2x + r2y + r2z = 1.
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2.2. Evolution

2.2 Evolution

Quantum systems evolve according to the Schrödinger equation:

H|ψ⟩ = iℏ
∂|ψ⟩
∂t

(2.8)

where H is the Hamiltonian. The effect of this kind of evolution is a reversible unitary

operation U on the system, such that:

|ψ(t)⟩ = U |ψ(0)⟩ = exp
[
−iHt

ℏ

]
|ψ(0)⟩ (2.9)

where |ψ(0)⟩ is the initial state. This operation on a single qubit corresponds to a

rotation on the Bloch sphere, as illustrated in figure 2.2. More generally, with sufficient

control over the Hamiltonian of a register of qubits, it is possible to apply a chosen

unitary transformation U on that register. This is necessary because the centrepiece

of quantum computing is the ability to apply the transformation dictated by some

quantum algorithm or protocol.

Figure 2.2: Unitary transformation on the Bloch sphere
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2.3. Measurement

2.3 Measurement

If the value of a qubit in state 2.4 is measured, the outcome is random, giving 0 with

probability cos2( θ2) and 1 with probability sin2( θ2). Quantum measurement is irre-

versible. At individual level, the system is projected into the quantum state corre-

sponding to the result recorded (if it is not destroyed, such as in the absorption of a

photon). Nondestructive measurement can be also considered as the preparation of a

new state, as the qubit is left in a known state and can be used for another process.

Measurement is the only way to extract information from a quantum system, so the

irreversibility dictates that there cannot be information gain by the external observer

without disturbance of the quantum system. This is a fundamental feature of quantum

mechanics, and not due to the fact that we haven’t yet worked out how to improve the

process. For a register of n qubits, a measurement on all qubits gives just one bit string

out of the 2n possibilities. So although such a register can in a sense hold (and thus

process) an exponential amount of information, quantum measurement only permits a

single result to be output. The expectation value (average) of some physical observable

L over many measurements (with a repeatedly prepared single system, or an ensemble)

is given by

⟨L⟩ = ⟨ψ|L|ψ⟩ (2.10)

If the system is in an eigenstate of L, a measurement of the corresponding observable

L always gives the eigenvalue associated with that eigenstate. When the qubit is in a

superposition of eigenstates, a single measurement of L cannot reveal the state perfectly

and statistical investigation is needed [5].

2.4 Quantum gates

The most widely considered approach to QIP follows the three-stage recipe that has

always been followed in quantum experiments. Prepare, evolve, then measure. The

evolution section of QIP is where most of the action takes place. The gate model of

QIP has a lot of similarity in its description to the abstract gate model of conventional
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2.4. Quantum gates

classical computing. We decompose the unitary operator prescribed by the algorithm

into elementary unitary operations on qubits, which is analogous to the decomposition

of a conventional computation into elementary logic gates operating on bits. It is impor-

tant to note that in general one cannot simply make quantum versions of conventional

logic circuits because these contain irreversible gates (between pairs of bits), such as

AND and OR.

a b a ∧ b a ∨ b
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Table 2.1: Truth table for classical AND and OR gates

As quantum evolution is unitary and reversible, these gates do not have quantum coun-

terparts. However, although it is not generally used in practice, it is possible to do

conventional computing reversibly. Since the deletion of bits by irreversible gates in-

creases entropy, all garbage has to be kept in a reversible computation.

2.4.1 Comparison with classical gates

For one input bit, there are two possible classical reversible gates. One of them is NOT

(table 2.2), the other is the identity gate, which maps its input to the output unchanged.

a NOT a

0 1
1 0

Table 2.2: Truth table for classical NOT gate

For two input bits, the only non-trivial gate is the controlled-NOT (CNOT) gate, which

XORs the first bit to the second bit and leaves the first bit unchanged (table 2.3).

Unfortunately, there are functions that cannot be computed using just those gates. In

other words, the set consisting of these gates is not universal. To compute an arbitrary

function using reversible classical gates, another gate is needed. One possibility is the

10



2.4. Quantum gates

a b a CNOT b

0 0 00
0 1 01
1 0 11
1 1 10

Table 2.3: Truth table for classical CNOT gate

Toffoli gate: this gate has 3-bit inputs and outputs and its behaviour is to flip the third

bit if the first two bits are set. The following is a table of the possible input and output:

a b c OUTPUT
0 0 0 000
0 0 1 001
0 1 0 010
0 1 1 011
1 0 0 100
1 0 1 101
1 1 0 111
1 1 1 110

Table 2.4: Truth table for classical Toffoli gate

This concept straightforwardly introduces the gate model for quantum computation.

Gates must have the same number of outputs as inputs, without deleting quantum

information. Although practical considerations usually dictate the way a conventional

computation is broken up into gates in a real machine, in principle, it is very convenient

to know that there exists a universal set of gates. In order to better understand theory

and the minimum requirements for hardware, it is very useful to know how to break

up a computation into fundamental gates. In fact, the complexity of an algorithm or a

process is essentially determined by the number of elementary gates needed to perform

it, as a function of the size of the input n.

2.4.2 Notable quantum gates

The gates needed for universal quantum computing are known: it must be possible

to perform arbitrary single qubit operations and some form of entangling operation

11



2.4. Quantum gates

between pairs of qubits. As with conventional computing, there is no unique set of

gates. So, it is useful to see first some notable example of quatum gates that perform

unitary transformations.

For quantum gates, obviously there is no such a thing as a truth table as input variables

are not just 0 and 1, but they can be represented by the unitary matrices which performs

the transformation on the input state.

Starting with single qubit operations, useful gates are Pauli matrices (2.6). Among

these, there is σx, which, if applied to classical bit would result in a NOT gate, but does

not represent a universal NOT for quantum gates, as it only maps correctly the north

pole and the south pole of the Bloch sphere.

The 2×2 Hadamard transform is another gate which is extensively used in quantum

computing. It performs a one-qubit rotation, mapping the qubit basis states |0⟩ and

|1⟩ to two superposition states with equal weight. This corresponds to the following

transformation matrix:

H = 1√
2

 1 1

−1 1

 (2.11)

Passing on to two-qubits gates, notable example are SWAP and CNOT gates, which

are characterized by the following matrices:

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (2.12)
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2.4. Quantum gates

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2.13)

The controlled-NOT (CNOT) gate, in particular, is an important gate because the set

of all one-qubit gates and the CNOT is the most common set of gates used to build

quantum circuits. Other sets of universal gates with fixed phase rotation are known

and can be used. However, these sets are not very efficient as they have to repeat fixed

angles rotations to approximate the desired precision of a single qubit gate. Anyway,

even if a given set of gates is universal, and therefore in principle it is sufficient for any

type of computation, sometimes it is convenient to use a super-complete set to build

more efficient circuits.
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Chapter 3

Linear optical quantum computing

The basic building blocks of linear optics are beam splitters, half- and quarter-wave

plates, phase shifters. In this chapter we will describe these devices mathematically

and establish the relations that are used throughout the rest of the work.

Operations via linear optical elements (beam splitters and phase shifters, in this case)

preserve the photon statistics of input light. For example, a coherent (classical) light

input produces a coherent light output; a superposition of quantum states input yields

a quantum light state output. Due to this reason, single photon source are used to

analyze the effect of linear optical elements and operators.

An intrinsic problem in using photons as information carriers is that photons hardly

interact with each other. This potentially causes a scalability problem for LOQC,

since nonlinear operations are hard to implement, which can increase the complexity of

operators and hence can increase the resources required to realize a given computational

function.
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3.1. Linear optics building blocks

Figure 3.1: Circuit element

3.1 Linear optics building blocks

Although we have seen that CNOT gate together with the rotation of individual qubits

constitutes a gate for a universal transform, a common method for constructing a recon-

figurable mode transformation from N input modes into N output modes is to divide the

problem into a network of transformations of 2 × 2 modes consisting of Mach–Zehnder

interferometers (MZI) [6], which therefore constitute the building blocks of the circuit.

Each MZI consists of two 50:50 beam splitters and two parametrized phase shifters, as

shown in figure 3.1. In integrated photonics platforms, beam splitters are commonly re-

alized by directional couplers. Phase shifting, instead, is based on the local variation of

the refractive index of a waveguide. This effect can be achieved through different phys-

ical mechanisms, depending also on the fabrication platform, but it is often convenient

to exploit the thermo-optic effect. By modulating the temperature of the waveguide

with a resistive microheater, it is possible to induce a local modification of the refractive

index and, in turn, a phase shift on the guided photons. Such a component is usually

referred to as thermal shifter.

15



3.1. Linear optics building blocks

The interferometer shown, therefore, overall applies the transformation dictated by the

product of the following matrices, which represent its individual components and act in

sequence:

BS1 =
1√
2

i 1

1 i

 (3.1)

PS1 =

eiϑ1 0

0 eiϑ2

 (3.2)

BS2 =
1√
2

i 1

1 i

 (3.3)

PS2 =

eiφ1 0

0 eiφ2

 (3.4)

UMZI = PS2 ·BS2 · PS1 ·BS1 (3.5)

Here we assume the unit cell is lossless; accounting for losses requires each MZI to be

described by a 4 × 4 matrix, rather than the 2 × 2 matrix considered here. Losses

can be modeled by “virtual” beam splitters coupling the original mode and a “vacuum”

mode. If such virtual beam splitters are included, the overall transformation can still

be represented as a unitary transformation of order M, where M > N accounts for the

additional loss channels. The N × N transformation that applies to our input and

output waveguide modes in that case is a nonunitary submatrix of U(M).
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3.2. Unitary transformation decomposition

3.2 Unitary transformation decomposition

In the general case of N input modes and N output modes, the Mach-Zehnder arrange-

ment in order to obtain a generic unitary transformation was first studied by Reck et al.

in [7], who identified a triangular arrangement, as shown in figure 3.2(a). After that,

the arrangement was optimized by Clements et al. in [8], as shown in figure 3.2(b).

This work demonstrated the possibility of realizing any transformation U through a

more compact arrangement of these same elements. A further advantage of "Clements"

arrangement is given by the symmetry of the number of elements acting on each line.

Figure 3.2: Reck’s and Clements’ decompositions

The algorithm with the steps to achieve "Clements" decomposition is shown in figure

3.3.
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3.2. Unitary transformation decomposition

Figure 3.3: Clements’ algorithm

Having seen these possible decompositions of a unitary transformation, the following

step is to analyze from a theoretical point of view the behaviour of a real circuit with 4

input and 4 output modes, of which a practical implementation was available in order to

compare expected response with experimental results and to carry out measurements.
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3.3. Layout of a circuit performing unitary transformation

3.3 Layout of a circuit performing unitary transformation

The circuit to be studied was developed by Quantum Technologies Laboratory of "Scienze

di Base e Applicate per l’Ingegneria" (SBAI) Department at Sapienza University. The

prototype has been built within "COPERNICO" project of "Piano Nazionale di Ricerca

Militare" (PNRM). References and details can be found in proceedings [9], [10] and [11]

by Bovino.

Figure 3.4: Optical, electronics and mechanics integration of InP circuit

Note the gold contacts for MZ voltage setting and control.

A photograph of the circuit is in figure 3.4, while the layout is represented in figure 3.5,

and as can be noted, it follows Clements’ decomposition scheme.
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3.3. Layout of a circuit performing unitary transformation

Figure 3.5: Circuit layout

For a deeper analysis it is useful to break it down by observing that it can be seen as

the application of four stages in sequence and these four stages are equal in pairs. The

theoretical analysis of this circuit therefore can be conducted by modeling the two types

of gates, each through a 4 x 4 matrix, and evaluating the expected theoretical output

given an input photon on one of the input modes. The varying parameter is the phase

shift induced by the thermal shifters.

It is possible to observe that, for each stage, the first pair of phase shifters affects the

output module, while the second pair may have the function of compensating for any

unwanted phase shifts.

Let’s see now, still from a theoretical point of view, the specific behavior of the two

types of gates for some possible input state vectors, that is for an input photon on the

first mode or on the second or third or fourth mode.
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3.3. Layout of a circuit performing unitary transformation

In figure 3.6, we can see type 1 gate, which constitutes the first and third stage of the

circuit.

Figure 3.6: Circuit layout: focus on type 1 gate
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3.3. Layout of a circuit performing unitary transformation

For input vector [1 0 0 0]’, as expected, the gate does not perform any transformation,

in fact the photon enters the first mode and leaves from the first mode, also because at

this stage the Mach-Zehnder acts only on modes 2 and 3. This expectation is supported

from what is reported in the two diagrams in figure 3.7.

Figure 3.7: Type 1 gate output for
[
1 0 0 0

]′
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3.3. Layout of a circuit performing unitary transformation

On the other hand, when the input photon is on mode 2, varying the parameter on the

phase shifter highlighted with a red circle, we obtain the output represented in figure

3.8. In details, when the phase shifter parameter is set to 0, this stage behaves like a

SWAP gate, when instead it is set to π, it behaves like an IDENTITY gate.

Figure 3.8: Type 1 gate output for
[
0 1 0 0

]′
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3.3. Layout of a circuit performing unitary transformation

Continuing the analysis of type 1 gate, we observe a similar behavior for the other two

possible input vectors, that is [0 0 1 0]’ and [0 0 0 1]’. In particular, when the photon

enters the 4th mode, the behavior can be mirrored to the 1st, and when it enters the

3rd mode, it behaves as a SWAP for phase shifter parameter set to 0 and as IDENTITY

if it is set to π.

Figure 3.9: Type 1 gate output for
[
0 0 1 0

]′
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3.3. Layout of a circuit performing unitary transformation

Figure 3.10: Type 1 gate output for
[
0 0 0 1

]′
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3.3. Layout of a circuit performing unitary transformation

Let’s pass to type 2 gate. In this case there is a Mach-Zehnder operating on the first

two modes and a second Mach-Zehnder operating on the third and fourth modes. The

output follows the same pattern as already shown for modes 2 and 3 of type 1 gate.

Figure 3.11: Circuit layout: focus on type 2 gate
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3.3. Layout of a circuit performing unitary transformation

In figures 3.12 and 3.13, there are output patterns when input vectors are [1 0 0 0]’ and

[0 1 0 0]’, varying the parameters on the circled phase shifters.

Figure 3.12: Type 2 gate output for
[
1 0 0 0

]′
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3.3. Layout of a circuit performing unitary transformation

Figure 3.13: Type 2 gate output for
[
0 1 0 0

]′
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3.3. Layout of a circuit performing unitary transformation

Finally, in figures 3.14 and 3.15 we see the output when there are [0 0 1 0]’ and [0 0 0

1]’ as input state vectors.

Figure 3.14: Type 2 gate output for
[
0 0 1 0

]′
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3.4. Implementing notable gates

Figure 3.15: Type 2 gate output for
[
0 0 0 1

]′

3.4 Implementing notable gates

From the theoretical model, therefore, it is possible to derive the required values for the

24 parameters in order to build well-known gates. For example, if we want to set the

circuit to implement an identical transformation (leave the input as it is), the values

are shown in the following table:

π π π π

π π 0 0 π π 0 0
0 0 π π 0 0 π π

0 0 0 0

Table 3.1: Parameter values for identical gate
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3.4. Implementing notable gates

Having more degrees of freedom than needed leaves the possibility to have more than

one configuration to implement the same gates, for example an identical transform can

be achieved also with the following configuration:

0 0 0 0
π 0 0 0 π 0 0 0
0 0 0 0 0 0 0 π

0 0 0 π

Table 3.2: Parameter values for identical gate - another option

Due to the fact that shifters are based on applying voltage to an integrated resistor,

among different configurations for the same gate, the preferable is the one that generates

less heat.

For a SWAP gate, the values are shown in table 3.3:

π π π π

π π 0 0 0 π/2 0 π

0 0 π π 0 π/2 π 0
0 0 0 0

Table 3.3: Parameter values for SWAP gate

And for a CNOT gate:

π π π π

π π 0 0 π π 0 0
0 0 π π 0 π 0 π/2

0 π 0 π/2

Table 3.4: Parameter values for CNOT gate

As expected, the described circuit allows to implement all unitary transforms, including

those described by the following matrices:
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3.4. Implementing notable gates

I ⊗H = 1√
2


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

 (3.6)

H ⊗ I = 1√
2


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

 (3.7)

H ⊗H = 1
2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 (3.8)

For example, I ⊗H is implemented with:

π/2 π/4 0 0
π π π π/4 π π 0 π

0 0 π/2 π/4 0 0 0 0
π π/4 0 π

Table 3.5: Parameter values for I ⊗H gate

32



Chapter 4

User interface development

After the theoretical analysis of the circuit, in this chapter we describe the implementa-

tion of the interface to control the circuit. From a practical point of view, the variation

of the parameter that characterizes the phase shifters is induced by applying a voltage,

experimentally determined in a range between 0 and -10 Volt. With 0 Volt applied,

the Mach-Zehnder interferometer behaves like a SWAP gate (with a phase factor to be

considered) while with -10 Volt, it behaves like an identity gate.

4.1 NI devices

The developed application controls the phase shifters through National Instrument

"analog voltage output modules", specifically NI-9264 (in figure 4.1), connected to a

computer through an appropriate chassis, for example NI-cDAQ-9184 (shown in figure

4.2) and a network interface. As every NI-9264 has 16 output lines, in order to control

24 devices, two modules are required. NI devices are shipped with a driver software

that allows communication with a computer, as in figure 4.3.
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4.1. NI devices

Figure 4.1: NI-9264

Figure 4.2: NI-cDAQ-9184

Figure 4.3: NI-MAX interface
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4.2. Interface at startup

4.2 Interface at startup

The user interface was implemented with MATLAB App Designer. After startup, it

creates the required channels to control phase shifters, reads a configuration file with a

table that links shifters’ parameters with applied voltage. When initialization phase is

finished, buttons are enabled.

In the form, it is possible to save and load files with a specific configuration of the gates

using provided SAVE and LOAD buttons. It is also possible to select from a combo box

in order to compute theoretical expected output. Finally, by clicking on RUN button,

execution phase starts and the commands are actually sent to the circuit.

Figure 4.4: User interface at startup
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4.3. Interface during execution

4.3 Interface during execution

During excution phase, all the controls are disabled, apart from STOP button, and the

expected module and phase values for the four output modes are shown in the text box

on the right on the basis of the theoretical model of the circuit and a specific input

selected from the combo box. These values can be compared with the readings on

physical detectors (after performing an appropriate normalization of the latter).

Figure 4.5: User interface while running
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4.4. Comparison of results

4.4 Comparison of results

Diagram in figure 4.6 represents the comparison between calculated output according to

the theoretical model described, in red, and values obtained experimentally by varying

the control voltage on the top left phase shifter of a single Mach-Zehnder interferometer.

In this case, the plots are quite close to each other, but the advantage of the presented

software is that it supports the possibility of setting custom voltage-shifting curves for

each of the phase shifters to be controlled. The benefit of this approach is linked to the

fact that components, although theoretically all having the same response, may have

differences due to fabrication process. Therefore, it is possible to calibrate the program

for its usage with a specific physical implementation of the circuit.

Figure 4.6: Comparison of theoretical and experimental response

Red plot shows theoretical output as a function of the shifter parameter for a single MZI,

yellow and blue plots represent experimental result as a function of applied voltage.
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Chapter 5

Conclusions

In conclusion, the developed application constitutes a proof-of-concept, showing a po-

tential of quantum circuits based on linear optics, which is the possibility of creating

a general purpose system and reconfiguring it to implement the algorithm of interest

from time to time.

A practical application that can actually be used requires an overall miniaturization

of the system, from the generation of the input to the detection of the output and to

be able to work with a greater number of qubits while dealing with the propagation of

errors.

Although there are these significant technological challenges, research is making progress

on several fronts, mostly because the development of quantum computers would have

a major impact in a lot of areas of great relevance, including cryptography, secure

communications and optimization problems.
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