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Sommario 

L'imaging iperspettrale (Hyperspectral Imaging - HSI) è diventato uno strumento 
inestimabile nell'osservazione della Terra, fornendo ricche informazioni spettrali attraverso 
centinaia di bande strette e contigue. Questa capacità consente una caratterizzazione e 
identificazione dettagliata dei materiali sulla superficie terrestre. Tuttavia, la risoluzione 
spaziale dei sensori HSI satellitari, come PRISMA (PRecursore IperSpettrale della Missione 
Applicativa) dell'Agenzia Spaziale Italiana (ASI), porta spesso ad avere pixel che 
contengono una miscela di materiali diversi (pixel misti). Le tecniche di decomposizione 
spettrale (spectral unmixing) mirano ad affrontare questa sfida scomponendo lo spettro 
misurato di un pixel misto in una collezione di spettri puri costituenti (endmember) e le loro 
corrispondenti abbondanze frazionali. Un accurato spectral unmixing è cruciale per 
numerose applicazioni, tra cui il monitoraggio ambientale, l'agricoltura di precisione, 
l'esplorazione mineraria e la gestione dei disastri. 

Questa tesi presenta lo sviluppo e la valutazione di una metodologia ibrida di spectral 
unmixing progettata per i dati iperspettrali PRISMA, integrando approcci 
geometrico/statistici tradizionali con tecniche di intelligenza artificiale. L'obiettivo primario 
era creare un flusso di lavoro robusto ed efficiente, capace di identificare accuratamente gli 
endmember e stimare le loro abbondanze da scene iperspettrali complesse. 

La metodologia proposta inizia con il pre-processamento dei dati PRISMA, che include la 
concatenazione delle bande VNIR e SWIR e l'associazione con le lunghezze d'onda 
corrispondenti. Un aspetto chiave dell'approccio è una robusta strategia di inizializzazione 
degli endmember che impiega molteplici algoritmi consolidati: Vertex Component Analysis 
(VCA), Principal Component Analysis (PCA) e N-FINDR. Questi metodi sfruttano diverse 
proprietà geometriche e statistiche dei dati iperspettrali per identificare potenziali 
endmember candidati. Gli endmember inizializzati servono come input per una Rete Neurale 
Convoluzionale (Convolutional Neural Network - CNN), che viene addestrata per affinare 
le firme spettrali degli endmember apprendendo complesse caratteristiche spettro-spaziali 
da sottoinsiemi di dati. Questa componente di deep learning mira a migliorare l'accuratezza 
e la discriminabilità degli endmember finali. A seguito dell'affinamento basato sulla CNN, 
le abbondanze frazionali per ciascun endmember all'interno di ogni pixel vengono stimate 
utilizzando l'algoritmo dei minimi quadrati non negativi (non-negative least squares - 
lsqnonneg), garantendo l'aderenza ai vincoli fisici (non negatività e somma unitaria 
implicitamente gestite attraverso il processo). Infine, una fase sperimentale prevede il 
tentativo di associare le firme spettrali degli endmember estratti con materiali noti, 
confrontandoli con la libreria spettrale del Jet Propulsion Laboratory (JPL) della NASA 
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utilizzando le metriche Spectral Angle Mapper (SAM) e Spectral Information Divergence 
(SID). 

L'efficacia della pipeline proposta è stata dimostrata utilizzando un dataset iperspettrale 
PRISMA. I risultati mostrano l'estrazione riuscita di firme spettrali di endmember distinti e 
la generazione delle corrispondenti mappe di abbondanza che rivelano pattern spaziali 
significativi correlati alle caratteristiche del suolo. L'analisi di cross-correlazione ha 
confermato l'unicità degli endmember identificati. Per valutare ulteriormente la robustezza 
e la generalizzabilità del nucleo di unmixing (inizializzazione + CNN), il modello è stato 
testato anche sul dataset iperspettrale ampiamente utilizzato dell'Università di Pavia, 
acquisito dal sensore ROSIS. Nonostante le differenze nelle caratteristiche del sensore e la 
mancanza di informazioni specifiche sulla lunghezza d'onda per Pavia, il modello ha 
separato con successo le principali classi di copertura del suolo presenti nella scena, 
allineandosi bene con le informazioni di ground truth e dimostrando l'adattabilità 
dell'approccio. 

Sebbene il processo centrale di unmixing abbia prodotto risultati promettenti, l'associazione 
finale con la libreria spettrale JPL tramite SAM e SID ha evidenziato difficoltà nel 
raggiungere un'elevata confidenza e accuratezza. Questo passaggio rimane un'area che 
richiede ulteriori indagini, potenzialmente coinvolgendo metriche di similarità più 
sofisticate, strategie di filtraggio della libreria o tecniche di confronto basate sulle 
caratteristiche spettrali (feature-based matching). 

In conclusione, questa tesi contribuisce a definire un nuovo framework ibrido per lo spectral 
unmixing che sinergizza i punti di forza dei metodi di inizializzazione tradizionali e del deep 
learning (CNN) per migliorare l'estrazione degli endmember dai dati PRISMA. Il metodo 
dimostra robustezza ed efficienza, in particolare lavorando con sottoinsiemi di dati. Il lavoro 
futuro dovrebbe concentrarsi sul miglioramento dell'affidabilità dell'associazione automatica 
tra gli endmember estratti e le librerie spettrali di riferimento, al fine di massimizzare 
l'applicabilità pratica dei risultati dell'unmixing per compiti quantitativi di telerilevamento. 

 

. 
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Abstract 

Hyperspectral imaging (HSI) has become an invaluable tool in Earth observation, providing 
rich spectral information across hundreds of narrow, contiguous bands. This capability 
allows for detailed characterization and identification of materials on the Earth's surface. 
However, the spatial resolution of satellite-based HSI sensors, such as the Italian Space 
Agency's (ASI) PRISMA (PRecursore IperSpettrale della Missione Applicativa), often leads 
to pixels containing a mixture of different materials (mixed pixels). Spectral unmixing 
techniques aim to address this challenge by decomposing the measured spectrum of a mixed 
pixel into a collection of constituent pure spectra (endmembers) and their corresponding 
fractional abundances. Accurate spectral unmixing is crucial for numerous applications, 
including environmental monitoring, precision agriculture, mineral exploration, and disaster 
management. 

This thesis presents the development and evaluation of a hybrid spectral unmixing 
methodology designed for PRISMA hyperspectral data, integrating traditional 
geometric/statistical approaches with artificial intelligence techniques. The primary 
objective was to create a robust and efficient workflow capable of accurately identifying 
endmembers and estimating their abundances from complex hyperspectral scenes. 

The proposed methodology begins with preprocessing of the PRISMA data, involving the 
concatenation of VNIR and SWIR bands and association with corresponding wavelengths. 
A key aspect of the approach is a robust endmember initialization strategy employing 
multiple established algorithms: Vertex Component Analysis (VCA), Principal Component 
Analysis (PCA), and N-FINDR. These methods leverage different geometric and statistical 
properties of the hyperspectral data to identify potential endmember candidates. The 
initialized endmembers serve as input for a Convolutional Neural Network (CNN), which is 
trained to refine the endmember signatures by learning complex spectral-spatial features 
from data subsets. This deep learning component aims to improve the accuracy and 
discriminability of the final endmembers. Following the CNN-based refinement, the 
fractional abundances for each endmember within each pixel are estimated using the non-
negative least squares (lsqnonneg) algorithm, ensuring adherence to physical constraints 
(non-negativity and sum-to-one implicitly managed through the process). Finally, an 
experimental step involves attempting to associate the extracted endmember signatures with 
known materials by comparing them against the NASA Jet Propulsion Laboratory (JPL) 
spectral library using the Spectral Angle Mapper (SAM) and Spectral Information 
Divergence (SID) metrics. 

The effectiveness of the proposed pipeline was demonstrated using a PRISMA hyperspectral 
dataset. Results show the successful extraction of distinct endmember signatures and the 
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generation of corresponding abundance maps that reveal meaningful spatial patterns related 
to ground features. Cross-correlation analysis confirmed the uniqueness of the identified 
endmembers. To further assess the robustness and generalizability of the unmixing core 
(initialization + CNN), the model was also tested on the widely used Pavia University 
hyperspectral dataset, acquired by the ROSIS sensor. Despite differences in sensor 
characteristics and the lack of specific wavelength information for Pavia, the model 
successfully separated the main land cover classes present in the scene, aligning well with 
ground truth information and demonstrating the adaptability of the approach. 

While the core unmixing process yielded promising results, the final association with the 
JPL spectral library using SAM and SID highlighted challenges in achieving high confidence 
and accuracy. This step remains an area requiring further investigation, potentially involving 
more sophisticated similarity metrics, library filtering strategies, or feature-based matching 
techniques. 

To conclude, this thesis introduces a novel hybrid framework for spectral unmixing. By 
synergizing the strengths of traditional initialization methods and deep learning (specifically 
CNNs), this framework offers potentially improved endmember extraction from PRISMA 
data. The method demonstrates robustness and efficiency, particularly when working with 
data subsets. Future work should focus on enhancing the reliability of the automatic 
association between extracted endmembers and reference spectral libraries to maximize the 
practical applicability of the unmixing results for quantitative remote sensing tasks. 
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Remote Sensing of Earth 

Since the beginning of last century, when the humankind was able to fly and observe the 
Earth from high altitudes, it was clear that the novel point of view could provide extremely 
useful information for better understanding the world we live in. Aereal photography 
provided the first means to quickly assess what was happening on ground, including natural 
phenomena, troups movements and civilian and military facility usage. Additionally, with 
the introduction of more sophisticated technologies, aereal photography became an 
extremely useful tool for broader uses, such as 3D mapping of landscapes (using 
stereoscopic imaging techniques), environmental and vegetation alanysis (using the first 
color films) up to the introduction of digital sensors, when it became possible to detect and 
analyse also different bands of the electromagnetic spectrum. With the “Space Age”, when 
mankind was able to launch satellites in Earth orbit, the possibilities increased dramatically. 
At the same time, however, technical and physical challenges increased as well, requiring to 
address new problems. 

1.1 Solar Radiation and Electromagnetic Spectrum 

Before going more in detail about remote sensing, it is important to mention the physics that 
stands behind it, in order to better understand what is the added value of using multiple bands 
fo the solar radiation. Our star, the Sun, constantly emits energy in the form of 
Electromagnetic radiation (EMR) across a wide range of wavelengths, collectively known 
as the “electromagnetic spectrum”. Part of this spectrum can be directly observed with our 
eyes, specifically with the retina, while the greates part of it is outside the visible spectrum. 
Depending on the wavelength (λ), the spectrum can be divided as follows: 

1. Gamma Rays: λ < 0.01 nanometers (nm) 

2. X-rays: 0.01 < λ < 10 nm 

3. Ultraviolet (UV): 10 < λ  < 400 nm 

4. Visible Light: 400 < λ < 700 nm 

5. Infrared (IR): 700 nm < λ <  1 mm 

a. Near-infrared (NIR): 700 nm < λ < 1.4 µm 
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b. Mid-infrared: 1.4 µm < λ < 3 µm. Used in thermal imaging. 

c. Far-infrared: 3 µm < λ < 1000 µm 

6. Microwaves: λ = 1 mm to 1 m 

7.  Radio Waves: λ = 1 m and longer 

 

 
Figure 1-1 The Electromagnetic Spetrum 

Each of these bands interacts differently with matter and the atmosphere, providing unique 
information. 

1.2 Interaction between electromagnetic waves and matter 

There are few basic ways electromagnetic (EM) waves interacts with matter: reflection, 
diffraction, refraction, absorption and emission. Now let us describe each in some detail. 

 Reflection: it occurs when EM waves bounce off a smooth surface (like mirrors). 
The angle of incidence is equal to the angle of reflection.  

 Diffuse reflection occurs on rough surfaces scattering the EM waves in all directions. 

 Diffraction: it is defined as the bending of EM waves around obstacles or through 
apertures, dependent on wavelength and obstacle size (e.g. light going through small 
openings or around sharp edges will diffract). 

 Refraction: it is defined as the bending of EM waves around obstacles or through 
apertures when it passes from one medium to another of different optical density 
causing it to bend. 

 Absorption: Absorption occurs when matter absorbs waves energy, often transferring 
it to heat. Darker objects absorb more visible light than light ones. 
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 Emission: Any object releases some type of electromagnetic radiation the depends 
on a temperature. Visual objects such as a star also radiates and gives off both visible 
and infra-red radiation. 

 Scattering: The redirection of light by particles smaller than its wavelength, is 
responsible for phenomena like the blue color of the sky. 

1.3 Interaction of Solar Radiation with the Atmosphere 

In order to properly understand what part of the EM spectrum might be used for remote 
sensing, it is important to describe how the Earth's atmosphere influences the transmission 
of solar radiation. Key processes include absorption, scattering, and emission. 

1.3.1 Atmospheric Absorption 

The atmosphere absorbs specific wavelengths of solar radiation due to the presence of gases 
such as oxygen (O₂), ozone (O₃), carbon dioxide (CO₂), and water vapor (H₂O). These gases 
create absorption bands, which are regions of the spectrum where radiation is absorbed and 
does not reach the Earth's surface. More specifically, Water Vapor and CO2 absorb 
significant amounts of IR radiation, influencing thermal remote sensing. 

 
Figure 1-2. Atmospheric Absorbtion 

1.3.2 Atmospheric Scattering 

As mentioned earlier, scattering affects the path of solar radiation as it passes through the 
atmosphere. It can reduce the clarity of remote sensing images by introducing haze. 
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1.4 Definitions 

1.4.1 Radiance 

Radiance is a measure of the radiant flux emitted, reflected, transmitted, or received by a 
surface per unit solid angle and per unit projected area. It quantifies how much light travels 
in a specific direction from a surface. The SI unit of radiance is watts per steradian per square 
meter (𝑊 · 𝑠𝑟ିଵ · 𝑚ିଶ). Radiance is useful for characterizing diffuse emission and 
reflection of electromagnetic radiation. It indicates how bright an object appears from 
different angles. 

1.4.2 Spectral Radiance 

Radiation emitted by a surface can be quantitatively characterized by the concept of spectral 
radiance, denoted as 𝐼(𝜆, 𝜃, 𝜑, 𝑇). Spectral radiance represents the power density per unit 
wavelength and per unit solid angle that traverses a unit surface area oriented orthogonally 
to the considered direction. 

Mathematically, spectral radiance is defined as: 

𝐼(λ, θ, φ, 𝑇) =  
𝑑𝑊(λ,  θ,  φ,  )

𝑑𝐴  ⋅   cos θ   ⋅  𝑑Ω  ⋅  𝑑λ
   ൬ 

𝑊

𝑚ଶ  ⋅  𝑠𝑟  ⋅  μ𝑚
 ൰   (1.1) 

 𝑑𝑊(𝜆, 𝜃, 𝜑, 𝑇) is the infinitesimal power radiated by the surface at temperature T 
through a differential surface element 𝑑𝐴, 

 𝑑𝐴 is the infinitesimal surface area, 

 𝜃and 𝜑 are the angles defining the direction of radiation, 

 𝑑Ω is the infinitesimal solid angle centered around the given direction, 

 𝑑𝜆 is the infinitesimal wavelength interval, 

 The cosine term 𝑐𝑜 𝑠 𝜃 accounts for the projection of the surface element in the 
considered direction. 

This definition encapsulates how radiative energy is distributed as a function of wavelength 
and direction, making spectral radiance a fundamental quantity in radiative transfer, remote 
sensing, and thermal emission analysis. For fixed values of λ,θ,φ,T the spectral radiance 
depends solely on the intrinsic physical properties of the emitting object. 
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1.4.3 Spectral Emissivity 

Spectral emissivity is a dimensionless quantity that measures how efficiently an object emits 
radiation at specific wavelengths compared to an ideal blackbody at the same temperature. 
It varies between 0 (no emission) and 1 (perfect emission like a blackbody). This concept is 
crucial for understanding thermal radiation properties. 

If the thermodynamic temperature of a surface is known, the measurement of its spectral 
radiance allows for the determination of its spectral emissivity, 𝑒஛(𝛌, 𝛉, 𝛗). It is defined as: 

𝑒஛(λ, θ, φ) =
𝐼(λ, θ, φ, 𝑇)

𝐵(λ, 𝑇)
  (1.2) 

where: 

 𝐼(λ, θ, φ, 𝑇) is the spectral radiance of the surface at temperature T, 

 𝐵(λ, 𝑇) is the spectral radiance of a black body at the same temperature, given by 
Planck’s law. 

The spectral emissivity provides crucial information about the material properties of a 
surface, influencing applications in thermal imaging, remote sensing, and energy balance 
studies. A perfect black body has 𝑒஛ = 1, while real materials exhibit values lower than 
unity, depending on wavelength and surface characteristics. 
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Hyperspectral Imaging 

Hyperspectral imaging (HSI) is a powerful remote sensing technology that has 
revolutionized the way we observe and analyze the Earth's surface. Unlike traditional 
imaging techniques that capture data in a few broad spectral bands, hyperspectral imaging 
collects information across hundreds of narrow, contiguous bands, providing a detailed 
spectral signature for each pixel in an image. This capability allows for the precise 
identification and characterization of materials, making hyperspectral imaging an invaluable 
tool for a wide range of applications, from environmental monitoring to agriculture, mineral 
exploration, and disaster management. 

2.1 Origins of Hyperspectral Imaging 

The concept of hyperspectral imaging has its roots in the early 20th century, with the 
development of spectroscopy and the understanding of the electromagnetic spectrum. 
Spectroscopy, the study of the interaction between matter and electromagnetic radiation, 
provided the foundational knowledge necessary for the development of hyperspectral 
imaging. Early spectroscopic techniques were limited to laboratory settings, where scientists 
could analyze the spectral properties of materials in controlled environments. 

The advent of remote sensing in the mid-twentieth century marked a significant milestone 
in the evolution of hyperspectral imaging. Remote sensing involves the acquisition of 
information about an object or phenomenon without making physical contact, typically using 
sensors mounted on aircraft or satellites. The first remote sensing missions focused on 
multispectral imaging, which captures data in a few broad spectral bands. While 
multispectral imaging provided valuable information, it lacked the spectral resolution needed 
for detailed material identification. 

The development of hyperspectral imaging began in the 1980s, driven by advances in sensor 
technology, computing power, and data processing algorithms. One of the pioneering 
hyperspectral imaging systems was the Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS), developed by NASA's Jet Propulsion Laboratory (JPL) in the late 1980s. AVIRIS 
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was capable of capturing data in 224 contiguous spectral bands, providing unprecedented 
spectral resolution for Earth observation. 

The success of AVIRIS and other early hyperspectral imaging systems paved the way for 
the development of spaceborne hyperspectral sensors. The launch of the Hyperion sensor on 
NASA's EO-1 satellite in 2000 marked a significant milestone in the history of hyperspectral 
imaging. Hyperion was the first spaceborne hyperspectral sensor capable of capturing data 
in 220 spectral bands, demonstrating the potential of hyperspectral imaging for global Earth 
observation. 

2.2 Current Applications 

Hyperspectral imaging has found applications in a wide range of fields, leveraging its ability 
to provide detailed spectral information for each pixel in an image. Some of the key 
applications include: 

 
Figure 2-1. Example of Hyperspectral mission application – ESA Copernicus 

2.2.1 Environmental Monitoring 

Hyperspectral imaging is widely used for monitoring and managing natural resources and 
ecosystems. It can detect changes in vegetation health, water quality, and soil composition, 
making it an invaluable tool for environmental assessment and conservation. For example, 
hyperspectral data can be used to monitor deforestation, track the spread of invasive species, 
and assess the impact of climate change on ecosystems. 
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2.2.2 Agriculture 

In agriculture, hyperspectral imaging is used for precision farming, crop health monitoring, 
and yield prediction. By analyzing the spectral signatures of crops, farmers can detect 
nutrient deficiencies, water stress, and disease outbreaks, allowing for targeted interventions 
that optimize resource use and improve crop yields. Hyperspectral imaging also supports the 
development of sustainable agricultural practices by reducing the need for chemical inputs 
and minimizing environmental impact. 

2.2.3 Mineral Exploration 

Hyperspectral imaging is a powerful tool for mineral exploration, enabling the identification 
of specific minerals based on their unique spectral signatures. This capability is particularly 
valuable in remote and inaccessible regions, where traditional exploration methods may be 
impractical. Hyperspectral data can be used to map mineral deposits, assess the potential for 
resource extraction, and guide exploration efforts. 

2.2.4 Disaster Management 

Hyperspectral imaging plays a critical role in disaster management, providing timely and 
accurate information for response and recovery efforts. In the aftermath of natural disasters 
such as earthquakes, floods, and wildfires, hyperspectral data can be used to assess damage, 
identify areas at risk, and guide emergency response efforts. For example, hyperspectral 
imaging can detect changes in land surface temperature, helping to identify hotspots and 
monitor the spread of wildfires. 

2.2.5 Urban Planning and Infrastructure 

Hyperspectral imaging is increasingly being used in urban planning and infrastructure 
development. It can provide detailed information on land use, vegetation cover, and building 
materials, supporting the development of sustainable and resilient cities. Hyperspectral data 
can also be used to monitor the condition of infrastructure, such as roads, bridges, and 
pipelines, enabling proactive maintenance and reducing the risk of failure. 
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ASI’s PRISMA Satellite 

The Italian Space Agency (ASI) has developed and launched a cutting-edge Earth 
observation satellite named PRISMA (PRecursore IperSpettrale del Sistema di 
Monitoraggio Ambientale). PRISMA represents a significant leap forward in hyperspectral 
imaging capabilities, providing crucial data for a wide range of applications, from 
environmental monitoring and disaster management to agriculture and security. This 
document outlines the PRISMA mission, its technical characteristics, and its potential 
impact. 

3.1 The Mission 

The PRISMA conceptual developments are the result of the HyPSEO project followed by a 
collaboration between ASI and the Canadian Space Agency for a Phase-A study called JHM. 
PRISMA has been launched on 22 March 2019 on board the VEGA rocket. PRISMA is a 
scientific and demonstrative mission. It will play a significant role in the upcoming 
international scenario of Earth Observation, both for scientific community and for end users, 
thanks to the capability to acquire worldwide lot of data with a very high spectral resolution 
and in a wide range of spectral wavelengths. PRISMA provides the capability to acquire, 
downlink and archive images of all Hyperspectral/Panchromatic channels totaling 200,000 
km2 daily almost on the entire worldwide area, acquiring square earth tiles of 30km by 30km. 
The combined hyperspectral and panchromatic products enable the capabilities of 
recognition of the geometric characteristics of a scene and may provide detailed information 
about the chemical composition of materials and objects on the Earth surface, giving 
enormous impacts to remote sensing applications. The PRISMA system includes Ground 
and Space segments. The PRISMA mission can operate in two modes, a primary mode and 
a secondary mode. The primary mode of operation is the collection of hyperspectral and 
panchromatic data from specific individual targets requested by end users. In the secondary 
mode of operation, the mission will have an established ongoing ‘background’ task that will 
acquire imagery to fill up the entire system resources availability.  
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3.2 Space segment 

The PRISMA space segment consists in a single small class spacecraft. The PRISMA 
payload is a hyperspectral/panchromatic camera with VNIR and SWIR detectors. It consists 
of an Imaging Spectrometer, able to acquire in a continuum of spectral bands ranging from 
400 to 2505 nm (from 400nm to 700nm in VNIR and from 920nm to 2505nm in SWIR) with 
30m of spatial resolution and a medium resolution Panchromatic Camera (PAN, from 400nm 
to 700 nm) with 5m resolution. The PRISMA Hyperspectral sensor utilizes the prism to 
obtain the dispersion of incoming radiation on a 2-D matrix detectors in order to acquire 
several spectral bands of the same ground strip. The “instantaneous” spectral and spatial 
dimensions (across track) of the spectral cube are given directly by the 2-D detectors, while 
the “temporal” dimension (along track) is given by the satellite motion (pushbroom scanning 
concept). 

 

 

Figure 3-1. Pushbroom scanning concept for recording reflected radiation from the Earth surface. 
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3.2.1 Payload 

The PRISMA Hyperspectral Payload, designed and developed by Leonardo, is a state-of-
the-art Electro-Optical instrument composed of a hyperspectral imager optically integrated 
with a medium resolution panchromatic camera. 
 
 
 

 
Figure 3-2. PRISMA Satellite 

 
Table 3-1. Main characteristics of the PRISMA payload 

Swath 30 Km 

GSD Hyperspectral: 30 m / PAN: 5 m 

 

 

Spectral 
Range 

VNIR: 400 – 1010 nm 

(66 spectral bands) 

SWIR: 920 – 2505 nm 

(174 spectral bands) 

PAN : 400 – 700 nm 

 

 

SNR 

VNIR: > 160:1 (>450:1 at 650nm) 

SWIR: > 100:1 (>360:1 at 1550nm) 

PAN: > 240:1 

Spectral 
Width 

≤ 14.5 nm 

The Payload architecture is composed of the two main subsystems: 

• The Hyperspectral / Panchromatic Optical Head (OH) 

• The Main Electronics (ME) 
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The optical design is based on high transmittance optical assemblies, including a reflective 
common telescope in Three-Mirror Anastigmat (TMA) configuration, a panchromatic 
camera (700-900 nm), and two spectrometers operating in Visible and Near Infrared (VNIR) 
and Short Wave Infrared (SWIR) regions, therefore covering the wavelength range between 
400 and 2500 nm. Panchromatic (PAN) images are provided at higher spatial resolution in 
order to allow for image fusion techniques (i.e. “pan sharpening”). The Optical Head 
architecture is based on a common optical bench that accommodates the telescope on the 
upper side and the imaging spectrometers and panchromatic camera on the lower one. The 
common TMA telescope provides excellent optical quality with a minimum number of 
optical elements. The imaging spectrometer is based on a prism solution, in order to obtain 
high efficiency and low polarization sensitivity. The Payload is equipped with high 
performance VNIR and SWIR Focal Plane Array (FPA) detectors, which operate at a 
temperature around 188K (VNIR) and 189K (SWIR). The cooling is obtained by means of 
a passive radiator facing the cold space. The configuration is designed in order to match a 
detector array with a pixel size of 30 µm for both VNIR and SWIR channels, and 6.5 µm for 
the PAN. The detection chain involves three focal planes which are physically 
accommodated on the optical bench. 

 

 
Figure 3-3. The PRISMA sensor 

 

The Optical Head has two apertures that give access to the acquisition chain, the Main Ports 
and the Solar Ports. They are opened or closed using dedicated mechanisms. The Main Ports 
is the main aperture used for all Earth Observation acquisitions and for some types of 
Calibration acquisitions (i.e. Moon Calibration and External Flat Field Calibrations). These 
acquisitions follow the main optical path. The Solar Port is only used for Sun Calibration. 

The instruments is managed by a Main Electronics (ME) box, which also handles power 
supply distribution and interfaces the Platform On Board Data Handling (OBDH) and 



 
Chapter 3 ASI’s PRISMA Satellite 

 

15 

Payload Data Handling and Transmission (PDHT) modules. The ME manages 
telecommands and telemetries and channels the bit-stream carrying spectral images. It 
includes a data compression board to handle the high data volume related to the large number 
of supported spectral bands. 

The Payload offers acquisition capabilities for Earth Observation in line with mission 
requirements and programmable in terms of active channels (VNIR, SWIR and 
Panchromatic), active bands and duration. Data acquired by the payload is transmitted to the 
Ground Segment and processed, resulting in PRISMA products that will be delivered to the 
end users, according to appropriate policies. Level 0 products carry raw scientific data and 
also include instrument and satellite ancillary data. They populate the PRISMA mission data 
catalogue. Level 1 products carry top-of-atmosphere radiometrically calibrated 
hyperspectral data. The data set includes co-registered panchromatic data. Besides Earth 
Observation capabilities the Payload offers a number of Calibration capabilities designed to 
ensure the maintenance of its performance along its lifecycle. Calibration takes place by 
means of the In-flight Calibration Unit (ICU) that allows the stimulation of the instrument 
with internal sources with a known spectral radiance (i.e. a lamp and a LED) and with 
radiation from Sun, through the Solar Port and a dedicated optical path that includes an 
integrating sphere. Additional calibration methods supported by the Payload are vicarious 
calibration, Moon calibration and External Flat Field calibration. 

3.3 Ground segment 

The PRISMA Ground Segment (GS) consists of the following main elements:  

 

- MCC – Mission Control Center;  

- SCC – Satellite Control Center;  

- IDHS - Image Data Handling Segment/Center.  

The MCC consists of a unique subsystem, the Mission Planning System (MPS). It is the G/S 
element responsible for the scheduling of on board operations and for coordinating ground 
activities, performing overall mission planning, allocating resources and solving conflicts. 
The SCC includes the Satellite Control System (SCS), the Flight Dynamics System (FDS), 
the S-band TT&C Station (TT&C) and the G/S Network (Communication infrastructure 
connecting the PRISMA G/S centers and facilities). The IDHS is in charge of performing all 
the chain from the Users requests management to the delivery of final products, including 
reception of images data from the satellite and their processing. It includes different 
elements: 

• Centro Nazionale Multimissione (CNM); 

• L0 Processor; 

• L1 Processor; 
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• L2 Processor; 

• Calibration facility; 

• GCP DB. 

The CNM provides all ground segment functions related to catalogue browsing, image 
ordering from catalogue, standard products processing and product delivery. It includes the 
X-band ground station used to receive the payload data downloaded by the PRISMA 
satellite.  

3.4 PRISMA Product 

The Ground Segment data processing provides at Sensor Radiance (Level 1 products) or at 
Surface Radiance obtained by applying atmospheric correction (L2B product) and 
georeferencing/geolocation on reflectance data (L2C/2D products). Users can order new 
acquisition or catalogue products containing the TOA (Top Of Atmosphere) radiometrically 
and geometrically calibrated HYP and PAN radiance images and/or the BOA (Botton Of 
Athmosphere) Geolocated or Geocoded Atmospherically corrected HYP and PAN radiance 
or reflectance images. In detail the standard products which can be delivered to users, are: 

• Level 0 (L0): Raw, uncalibrated sensor data with associated metadata. These 
products include instrument and satellite ancillary data and populate the mission 
data catalog. L0 products are associated with Key Data Parameters (KDPs) for 
further processing. L0 products are not provided to the users. 

• Level 1 (L1): Radiometrically corrected and calibrated top-of-atmosphere (TOA) 
radiance data in physical units. L1 products include both hyperspectral and 
panchromatic data that are coregistered. The L1 data is formatted as HDF5 files 
with separate groups for science data, ancillary data, global attributes, and 
housekeeping information. Level 1 products are generated upon user request. 

• Level 2B (L2B): At-surface radiance products in sensor geometry obtained by 
applying atmospheric corrections to Level 1 data. This includes data corrected 
for Rayleigh scattering, gaseous absorption, water vapor absorption, and aerosol 
scattering. Level 2B products are delivered with an attached geocoding model. 
L2B products are generated upon user request. 

• Level 2C (L2C): Surface reflectance products with an attached geocoding model 
that are obtained by applying geometric and atmospheric corrections to L1 data. 
L2C products include an aerosol characterization product, water vapor map 
product, and cloud characterization. L2C products are generated upon user 
request. 

• Level 2D (L2D): Geocoded surface reflectance products projected onto a 
cartographic UTM reference system. L2D products are orthorectified, with or 
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without the use of Ground Control Points (GCPs). L2D products are generated 
upon user request. 

3.5 Orbit and coverage 

PRISMA nominal orbit is a frozen Sun-synchronous orbit with repeat cycle of 29 days (430 
orbits). The orbit mean altitude is about 614.8 Km with an inclination of 97.851°. The Local 
Time of Descending Node is 10.30 am. The orbit parameters are: 

 
Table 3-2. PRISMA orbit parameters 

PARAMETER VALUE 

Semi-major axis [km] 6992.935 

Mean Altitude [km] 614.8 

Eccentricity 0. 0010566 

Inclination [deg] 97.851 

Argument of Perigee [deg] 90.0 

Period [seconds] 5819.7 

Rev/days 14.85 

Repetition factor 14.83 

 

The satellite will be able to pass over the same orbit within one month. Therefore, the orbit 
mission is designed in order to guarantee a repeating cycle shorter than 1 month, in 
particular, the baseline PRISMA orbit shall have a repeat time of 29 days. 

The Primary area of interest considered includes almost all the main landmasses and is 
characterized by the following coordinates: 

• Latitude: from 70° N to 70°S 

• Longitude from 180°W to 180°E 
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Figure 3-4. ASI’s PRISMA Mission Area of interest 
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Spectral Unmixing 

4.1 Introduction to Hyperspectral Unmixing 

Spectral unmixing is a fundamental technique in hyperspectral remote sensing, aimed at 
decomposing mixed spectral signatures into a set of pure spectral components, known as 
endmembers, and their corresponding fractional abundances. This process is essential for 
accurately identifying materials on the Earth's surface when pixel resolution is insufficient 
to isolate homogeneous materials. This is the case of PRISMA satellite, where every pixel 
is 30 x 30 m wide, resulting in likely multiple endmembers per pixel. 

The spectral unmixing problem can be formally expressed as follows. Given an observed 
spectral vector 𝑥 ∈ 𝑅௅, where L represents the number of spectral bands, the objective is to 
determine a set of endmembers 𝐸 = [𝑒ଵ, 𝑒ଶ, … , 𝑒ெ] ∈ 𝑅௅×ெ and corresponding abundance 
fractions 𝑎 ∈ 𝑅ெ, such that: 

𝑥 = 𝐸𝑎 + 𝑛, where 𝑛 represents the noise term. The constraints ∑ 𝑎௜
ெ
௜ୀଵ = 1 and  0 ≤ 𝑎௜ ≤

1 for all i ensure physical interpretability of the abundances. 

4.2 Linear vs. Nonlinear Spectral Unmixing 

Spectral unmixing techniques can be broadly classified into linear and nonlinear methods. 
The Linear Mixing Model (LMM) assumes that each pixel is a linear combination of 
endmember spectra, weighted by their respective abundances: 

𝑥 = ෍ 𝑎௜𝑒௜

ெ

௜ୀଵ

+ 𝑛 (4.1) 

LMM is widely used due to its mathematical simplicity and effectiveness in many real-world 
scenarios. However, in cases where multiple scattering effects and nonlinear interactions 
occur (e.g., in dense vegetation, urban areas, or water bodies), LMM fails to provide accurate 
results. 

In contrast, Nonlinear Mixing Models (NMMs) incorporate higher-order interactions 
between endmembers. One common nonlinear model is the bilinear model: 
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𝑥 = ෍ 𝑎௜𝑒௜

ெ

௜ୀଵ

+ ෍ ෍ 𝑎௜𝑎௝𝑒௜

ெ

௝வ௜

ெ

௜ୀଵ

⊙ 𝑒௝ + 𝑛 (4.2) 

 

where ⊙ denotes element-wise multiplication. Other nonlinear models include radiative 
transfer models and kernel-based approaches. 

4.3 Unsupervised Endmember Extraction 

The extraction of endmembers is a critical step in spectral unmixing and can be categorized 
into supervised and unsupervised methods. In the following section we will describe some 
of the most common methods, some of which will be used in the proposed code (Chapter 5). 

4.3.1 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a statistical method widely used for dimensionality 
reduction and feature extraction in hyperspectral unmixing. It transforms high-dimensional 
spectral data into a lower-dimensional space while preserving the maximum variance in the 
dataset. By doing so, PCA enhances the separability of endmembers and reduces redundancy 
in hyperspectral images. 

Given a hyperspectral dataset represented as a matrix 𝑋 ∈ 𝑅௅×ே, where L is the number of 
spectral bands and N is the number of pixels, the first step in PCA is to compute the mean-
centered data matrix: 

𝑋௖ = 𝑋 − 𝑋ത (4.3) 

where 𝑋ത represents the mean spectrum computed over all pixels. The covariance matrix C is 
then obtained as: 

𝐶 =
1

𝑁
𝑋௖𝑋௖

் (4.4) 

PCA proceeds by solving the eigenvalue problem: 

CV = VΛ (4.5) 

where V is the matrix of eigenvectors (principal components) and Λ is the diagonal matrix 
of eigenvalues, which indicate the amount of variance explained by each principal 
component. 

The principal components associated with the highest eigenvalues capture the most 
significant spectral variance in the dataset. In the context of spectral unmixing, PCA is used 
to: 

1. Reduce Dimensionality: Selecting the top M principal components instead 
of using all L bands improves computational efficiency. 
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2. Enhance Endmember Separability: Endmembers tend to cluster along 
specific principal components, making it easier to identify pure spectra. 

3. Noise Reduction: By discarding components associated with small 
eigenvalues, PCA eliminates noise while retaining essential spectral 
features. 

After applying PCA, a common approach for endmember extraction is to identify pixels that 
exhibit extreme values in the transformed space, assuming that pure spectral signatures 
correspond to these extremities. 

4.3.2 Vertex Component Analysis (VCA) 

A widely used approach that assumes endmembers are the vertices of a convex hull in 
spectral space. VCA exploits the affine transformation property of LMM to iteratively 
identify extreme spectral signatures. It is based on the assumption that the spectral signatures 
of endmembers form a convex simplex in the spectral space. VCA exploits the affine 
transformation property of the LMM to iteratively identify the most extreme spectral 
signatures. 

Given a hyperspectral dataset X ∈ R୐×୒, where L is the number of spectral bands and N is 
the number of pixels, VCA aims to identify a set of M endmembers  
E = [eଵ, eଶ, … , e୑] ∈ R୐×୑ such that: 

𝐱𝐢 ≈ ෍ 𝑎௜௝𝐞𝐣

ெ

௝ୀଵ

, with ෍ 𝑎௜௝

ெ

௝ୀଵ

= 1 and 𝑎௜௝ ≥ 0 (4.6) 

The steps of the VCA algorithm are the following: 

1. Whitening the Data: The hyperspectral data X is first transformed using Principal 
Component Analysis (PCA) to reduce redundancy and enhance computational 
efficiency. The data is projected onto a subspace of dimension M−1: 

X୵ = WX (4.7) 

where W is the whitening transformation matrix derived from the covariance matrix of X. 

2. Random Projections: VCA exploits the property that endmembers lie at the extrema of 
the data cloud. A series of random projection vectors r୩ are used to iteratively identify 
these extrema: 

p(୩) = X୵
୘ r୩ (4.8) 

The pixel corresponding to the maximum projection value is selected as a candidate 
endmember. 

3. Deflation Process: Once an endmember is identified, the data is projected onto the 
subspace orthogonal to the identified endmember to prevent reselection. Given an 
identified endmember e୨, the deflation process is performed as: 

X୵ = ൫I − e୨e୨
୘൯ (4.9) 
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Iterative Endmember Selection: Steps 2 and 3 are repeated until M endmembers have been 
selected. The final set of endmembers is transformed back to the original spectral space using 
the inverse whitening transformation: 

E = WିଵE୵ (4.10) 

Between VCA’s advantages it is worth mentioning that it is usually computationally efficient 
and it does not require prior knowledge of the number of endmembers. However, there are 
also some limitations, including the fact that it assumes that pure endmembers exist within 
the dataset, which may not always be true. Additionally, this method is sensitive to noise 
and variations in spectral signatures. 

4.3.3 Pixel Purity Index (PPI)  

The Pixel Purity Index (PPI) is a widely used method for unsupervised endmember 
extraction in hyperspectral unmixing. It is based on the assumption that pure spectral 
signatures appear as extreme points in high-dimensional spectral space. By repeatedly 
projecting spectral data onto randomly generated unit vectors, PPI identifies the pixels that 
most frequently appear as extrema. 

Given a hyperspectral dataset X ∈ R୐×୒, where L is the number of spectral bands and N is 
the number of pixels, the PPI method follows these steps: 

Data Projection: for each random unit vector r୩, project all spectral vectors x୧ onto r୩: 

p୧
(୩)

= x୧
୘r୩ (4.11) 

Extreme Point Identification: identify the pixels corresponding to the maximum and 
minimum projection values: 

𝑖௠௔௫ = arg max
௜

𝑝௜
(௞)

, 𝑖௠௜௡ = arg min
௜

𝑝௜
(௞)

 (4.12) 

Repetition: repeat the process for K randomly chosen projection vectors. Maintain a counter 
for each pixel that tracks the number of times it appears as an extreme point. 

Thresholding: Select pixels that exceed a predefined threshold as candidate endmembers. 
These are considered the purest spectral signatures in the dataset. 

PPI is a simple and effective method for datasets with distinct pure pixels and it does not 
require prior knowledge of the number of endmembers. However, it is usually 
computationally expensive due to the need for a large number of projections and it is 
sensitive to noise and outliers, which can affect the selection of pure pixels. 
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4.3.4 N-FINDR 

N-FINDR is a widely used unsupervised endmember extraction algorithm based on the 
geometric principle that the simplex with the largest volume enclosing the data points in 
spectral space corresponds to the optimal set of endmembers. It operates under the 
assumption of a LMM, where each observed spectral pixel can be expressed as a convex 
combination of endmembers. 

Given a hyperspectral dataset X ∈ R୐×୒, where L is the number of spectral bands and N is 
the number of pixels, N-FINDR seeks to determine a set of M endmembers  
E = [eଵ, eଶ, … , e୑] ∈ R୐×୑ such that they maximize the volume of the simplex defined by 
the endmembers. 

The volume V of a simplex formed by M endmembers in an L-dimensional space is given 
by: 

V =
1

(M − 1)!
|det([eଶ − eଵ, eଷ − eଵ, … , e୑ − eଵ])| (4.13) 

N-FINDR aims to iteratively refine the selection of endmembers to maximize this volume, 
using the following steps: 

1. initialize endmembers: randomly select M pixels from the dataset as an initial set of 
endmembers; 

2. volume calculation: compute the volume of the simplex formed by the current set of 
endmembers using the determinant-based formula; 

3. pixel substitution: for each candidate endmember position j, replace e୨ with every other 

pixel in X and recompute the volume. 

4. if a new pixel increases the simplex volume, update the endmember set with this new 
pixel. 

5. iterate until convergence: repeat step 3 until no further volume increase is observed. 

N-FINDR is an efficient and deterministic method for identifying endmembers, that ensures 
maximal separability of extracted endmembers. However, we can mention between its 
limitations that it is sensitive to noise and outliers, as extreme values can dominate selection. 
Additionally, it is computationally expensive for large datasets due to iterative volume 
computations. 

4.4 Supervised Endmember Extraction 

In contrast to unsupervised methods, supervised approaches rely on reference spectral 
libraries, ground truth data, or prior knowledge to guide the extraction process. These 
include: 

1. Spectral Angle Mapper (SAM): Measures the similarity between observed spectra and 
reference endmembers using the spectral angle distance. 
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2. Support Vector Machines (SVMs): Classify spectral data based on labeled training 
samples, enabling robust endmember selection. 

4.5 Advanced Spectral Unmixing Techniques 

4.5.1 Autoencoders for Spectral Unmixing 

Autoencoders (AEs) are neural network architectures designed for unsupervised feature 
learning, particularly suited for hyperspectral unmixing. They consist of two primary 
components: an encoder that compresses input data into a latent representation and a decoder 
that reconstructs the original data from this compressed representation. The objective is to 
learn an optimal transformation that captures the underlying spectral characteristics of the 
data while reducing noise and redundancy. 

Given an input spectral vector x ∈ R୐, an autoencoder consists of an encoder function 
𝑓஘: 𝑅௅ → 𝑅ௗ and a decoder function 𝑔ம: 𝑅ௗ → 𝑅௅, where d is the dimensionality of the latent 

space, and θ, ϕ are the learned parameters. The encoding and decoding processes are defined 
as: 

z = f஘(x) = σ(Wୣx + bୣ), xො = gம(z) = σ(Wୢz + bୢ) (4.14) 

where Wୣ ∈ 𝑅ௗ×௅ and Wୢ ∈ 𝑅௅×ௗ are the weight matrices of the encoder and decoder, 
respectively, bୣ ∈ 𝑅ௗand bୢ ∈ 𝑅௅ are bias terms, σ  is a non-linear activation function such 
as ReLU or sigmoid. The loss function for training an autoencoder is typically the 
reconstruction error, given by the mean squared error (MSE): 

𝐿(θ, ϕ) =
1

𝑁
෍ห|𝑥௜ − 𝑥పෝ |ห

ଶ
ே

௜ୀଵ

 (4.15) 

where N is the number of training samples. 

For hyperspectral unmixing, the latent representation z is interpreted as the abundance vector 
a, constrained such that a satisfies non-negativity and sum-to-one conditions. This can be 
achieved using a softmax activation function: 

𝑎௜ =
𝑒௭೔

∑ 𝑒௭ೕெ
௝ୀଵ

 (4.16) 

The endmember matrix E can be learned as part of the decoder weights, allowing the network 
to extract representative spectral signatures directly from the data. 

Autoencoders techniques are able to Learn non-linear feature representations, improving 
unmixing in complex scenarios. Additionally, they can incorporate physical constraints like 
sum-to-one and non-negativity. However, they require large datasets for training to avoid 
overfitting, and they are computationally expensive compared to traditional linear methods. 
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4.5.2 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) have emerged as powerful tools for hyperspectral 
unmixing, particularly in scenarios where spatial dependencies between pixels provide 
additional information. Unlike fully connected networks, CNNs exploit local patterns in 
spectral data, making them particularly suited for extracting spectral-spatial features. 

A CNN consists of multiple layers, including convolutional layers, activation functions, 
pooling layers, and fully connected layers. The convolutional operation applied to an input 
hyperspectral image X is given by: 

𝐹௜,௝
(௟)

= σ ቌ ෍ ෍ ෍ 𝑊௠,௣,௤
(௟)

𝑋௜ା௣,௝ା௤
(௟ିଵ)

ொ

௤ୀଵ

௉

௣ୀଵ

ெ

௠ୀଵ

+ 𝑏(௟)ቍ (4.17) 

where: 

𝐹௜,௝
(௟) is the feature map at position (𝑖, 𝑗) in layer l, 𝑊௠,௣,௤

(௟)  is the convolutional kernel of size 

𝑃 × 𝑄 applied to input m, 𝑏(௟) is the bias term, σ is an activation function (e.g., ReLU or 
sigmoid). 

Following the convolutional layer, pooling layers are used to reduce dimensionality while 
retaining critical spectral-spatial features: 

𝐹௜,௝
(௟)

=   max
௣,௤

𝐹௜ା௣,௝ା௤
(௟ିଵ)

 (4.18) 

where max-pooling selects the maximum value in a given window 𝑝 × 𝑞, improving 
computational efficiency and robustness. 

For spectral unmixing, CNNs are trained to extract spatial and spectral correlations to 
improve endmember and abundance estimation. Given an input hyperspectral image X, 
CNNs predict the abundance maps A by learning hierarchical representations: 

A = f(X; θ) (4.19) 

where f represents the CNN function parameterized by weights θ. The network is trained 
using a loss function, such as the mean squared error (MSE): 

𝐿(θ) =
1

𝑁
෍|𝐴௜ − 𝐴ప

෡ |ଶ

ே

௜ୀଵ

 (4.20) 

Between the advantages of using CNNs we can mention the ability to capture spatial 
dependencies, improving robustness in mixed-pixel scenarios. Additionally, CNNs can 
model nonlinearity more effectively than traditional methods and they are able to reduce 
spectral variability by leveraging spatial information. On the other hand, CNNs are 
computationally expensive, requiring significant processing power. 
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Proposed Unmixing Code 

The proposed unmixing code uses a mix of multiple techniques in order to obtain robust 
solutions independently with respect to the selected scenarios. Additionally, the use of a 
limited subset allows to reduce the computational time and obtain useful results in few hours 
also using a consumer grade laptop. More in detail, the code starts importing the 
hyperspectral image and associating the bands numbers with the PRISMA’s wavelength. In 
the following part the actual unmixing process takes place, with the initialization of the 
endmembers (using VCA, PCA and N-FINDR techniques), in order to provide robust inputs 
to the Convolutional Neural Network (CNN). The network is trained and fine-tuned using 
two randomly selected sub-sets. The last phase, before plotting results, associates the 
computed endmembers with the library from NASA Jet Propulsion Laboratory (JPL), using 
a mix of Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) 
techniques in order to select the most “similar” material from the library. 

5.1 Data Preprocessing 

The code starts by reading the PRISMA satellite data from an HDF5 file. The data consists 
of two cubes: VNIR (Visible and Near-Infrared, 66 bands) and SWIR (Short-Wave Infrared, 
173 bands). These cubes are concatenated along the spectral dimension to form a single 
hyperspectral data cube. 

swirData = double(h5read(inputFile, swirPath)); 

vnirData = double(h5read(inputFile, vnirPath)); 

data = cat(2, vnirData, swirData); 
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5.2 Band-Wavelength Association 

The code reads an Excel file containing the band numbers and their corresponding 
wavelengths. The wavelengths are sorted in ascending order, and the band numbers are 
rearranged accordingly. 

 

[num, txt, raw] = xlsread(excelFile); 

band_numbers_VNIR = num(1:66, 1); 

wavelengths_VNIR = num(1:66, 2); 

band_numbers_SWIR = num(67:end, 1); 

wavelengths_SWIR = num(67:end, 4); 

band_numbers = [band_numbers_VNIR; band_numbers_SWIR]; 

wavelengths = [wavelengths_VNIR; wavelengths_SWIR]; 

[wavelengths_sorted, sortIdx] = sort(wavelengths); 

band_numbers_sorted = band_numbers(sortIdx); 

``` 

5.3 Hyperspectral Unmixing 

5.3.1 Endmember Initialization 

The code initializes endmembers using three techniques: N-FINDR, VCA, and PCA. 

- N-FINDR: This algorithm finds the simplex of maximum volume that can be 
inscribed within the data cloud. The vertices of this simplex are considered as 
endmembers. 

- VCA: Vertex Component Analysis is a geometric approach that projects the data 
onto a subspace and then iteratively finds the vertices of the simplex. 

- PCA: Principal Component Analysis reduces the dimensionality of the data by 
projecting it onto the principal components. The endmembers are then extracted from 
the reduced space. 

endmembers_init1_nf = nf_findr(X1', num_endmembers); 

endmembers_init1_vca = vca(X1', num_endmembers); 

endmembers_init1_pca = pca_endmembers(X1', num_endmembers); 
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5.3.2 CNN for Endmember Extraction 

A Convolutional Neural Network (CNN) is used to refine the endmembers. The CNN is 
trained on a subset of the data, where the input is the spectral data and the output is the initial 
abundance estimates. The CNN architecture can be described as follows: 

- Input Layer: Accepts the spectral data reshaped into a 4D tensor. 

- Convolutional Layer: Applies a 3x3 convolution with 16 filters. 

- ReLU Activation: Introduces non-linearity. 

- Fully Connected Layer: Maps the features to the number of endmembers. 

- Regression Layer: Outputs the abundance estimates. 

 

layers = [ 

    imageInputLayer([1 1 size(X1, 2)]) 

    convolution2dLayer(3, 16, 'Padding', 'same') 

    reluLayer 

    fullyConnectedLayer(num_endmembers) 

    regressionLayer]; 

``` 

The CNN is trained using the Adam optimizer with a learning rate of 1e-3 for 500 epochs. 

 

options = trainingOptions('adam', ... 

    'MaxEpochs', 500, ... 

    'MiniBatchSize', 32, ... 

    'InitialLearnRate', 1e-3, ... 

    'Verbose', false, ... 

    'Plots', 'training-progress'); 

net1 = trainNetwork(X1_cnn, Y1, layers, options); 

``` 

5.3.3 Abundance Estimation using lsqnonneg 

The non-negative least squares (lsqnonneg) method is used to estimate the abundances of 
the endmembers. This method solves the following optimization problem: 

 

min
஺

|𝑋 − 𝐸𝐴|ଶ
ଶ  subject to 𝐴 ≥ 0 (5.1) 
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where (𝑋)  is the observed spectral data, (𝐸) is the endmember matrix, and (𝐴) is the 
abundance matrix. 

 

for i = 1:size(X1, 1) 

    abundances_init1(i, :) = lsqnonneg(endmembers_init1, X1(i, :)')'; 

end 

5.4 Spectral Library Import 

The code imports a spectral library from JPL, which contains spectral signatures of various 
materials. The library is read from text files, and the reflectance values are normalized. 

 

files = dir(fullfile(libraryFolder, '*.txt')); 

for i = 1:length(files) 

    filename = fullfile(libraryFolder, files(i).name); 

    fileID = fopen(filename, 'r'); 

    line = fgetl(fileID); 

    name = strtrim(strrep(line, 'Name: ', '')); 

    data = textscan(fileID, '%f %f', 'HeaderLines', 21); 

    fclose(fileID); 

    reflectance_normalized = data{2} / 100; 

    library_spectra(i).name = name; 

    library_spectra(i).wavelength = data{1} * 1000; 

    library_spectra(i).reflectance = reflectance_normalized; 

end 

``` 
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5.5 Endmember Comparison 

The extracted endmembers are compared with the spectral library using Spectral Angle 
Mapper (SAM) and Spectral Information Divergence (SID). 

- SAM: Measures the spectral similarity between two spectra by calculating the angle 
between them in the spectral space. 

 

SAM(𝑠ଵ, 𝑠ଶ) = cosିଵ ൬
𝑠ଵ ⋅ 𝑠ଶ

|𝑠ଵ||𝑠ଶ|
൰ (5.2) 

- -SID: Measures the divergence between two probability distributions derived from 
the spectra. 

SID(𝑠ଵ, 𝑠ଶ) = 𝐷(𝑠ଵ|𝑠ଶ) + 𝐷(𝑠ଶ|𝑠ଵ) (5.3) 

where (𝐷(𝑠ଵ|𝑠ଶ)) is the Kullback-Leibler divergence. 

 

for i = 1:num_endmembers 

    extracted = endmembers_original_space(:, i); 

    extracted_norm = extracted / norm(extracted); 

    for j = 1:length(library_spectra) 

        library_interp = interp1(library_spectra(j).wavelength, ... 

                             library_spectra(j).reflectance, ... 

                             prisma_wavelengths, 'spline', 'extrap'); 

        library_norm = library_interp / norm(library_interp); 

        dot_product = dot(extracted_norm, library_norm); 

        norm_product = norm(extracted_norm) * norm(library_norm); 

        if norm_product > 0 

            sam_values(i, j) = acos(max(-1, min(1, dot_product / 

norm_product))); 

        else 

            sam_values(i, j) = NaN; 

        end 

        sid_values(i, j) = spectral_information_divergence(extracted, 

library_interp); 

    end 

end 
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Results 

6.1 Identified Endmembers 

The proposed code correctly extracted 12 different endmembers. Their spectral signatures 
were plotted in terms of normalized reflectance vs. wavelength (Figure 6-1, Figure 6-2 and 
Figure 6-3), as defined by PRISMA specification. In order to be sure that the extracted 
endmembers were actually different between each other, the cross-correlation values were 
calculated (Figure 6-4).  

 
Figure 6-1. Spectral signatures – Endmembers 1 to 4 
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Figure 6-2. Spectral signatures – Endmembers 5 to 8 

 

 
Figure 6-3. Spectral signatures – Endmembers 9 to 12 
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Figure 6-4. Endmembers’ spectra cross-correlations. 

  



 
Chapter 5 Proposed Unmixing Code 

 

36 

6.2 Abundances 

Following endmembers extraction, the relative abundances were plotted. Abundances maps 
confirm visually that the identified endmembers are actually different, since their presence 
on the ground might be associated with different structures, human-made features and 
natural elements. 

 
Figure 6-5. Abundance map – Endmember 1 

 
Figure 6-6. Abundance map – Endmember 2 
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Figure 6-7. Abundance map – Endmember 3 

 

 
Figure 6-8. Abundance map – Endmember 4 
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Figure 6-9. Abundance map – Endmember 5 

 

 
Figure 6-10. Abundance map – Endmember 6 
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Figure 6-11. Abundance map – Endmember 7 

 

 
Figure 6-12. Abundance map – Endmember 8 
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Figure 6-13. Abundance map – Endmember 9 

 

 
Figure 6-14. Abundance map – Endmember 10 
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Figure 6-15. Abundance map – Endmember 11 

 

 
Figure 6-16 Abundance map – Endmember 12 
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6.3 Model validation 

The limit of PRISMA data is the current lack of dedicated campaigns to cross-corelate 
measures with ground truth data. In order to mitigate this limitation, the proposed model was 
tested against other hyperspectral data, aiming to verify that it is able to isolate multiple 
endmembers and consistently associate them to different classes. 

Specifically, the model was tested against the Pavia University hyperspectral image acquired 
by the ROSIS sensor during a flight campaign over Pavia, northern Italy. The data is publicly 
available on Group De Inteligencia Computacional (GIC). 

The Pavia university HSI has 103 spectral bands, and It contains 610 x 340 pixels, but 
spectral samples of the image contain no information about the wavelengths. The geometric 
resolution is 1.3 meters. The groundtruth of the HSI is differentiated into 9 classes. 

 
Figure 6-17. University of Pavia – Pancromatic (left) vs Hyperspectral classes (right) 

Table 6-1. Groundtruth classes for the Pavia University scene and their respective samples number 
 

# Class Samples 

1 Asphalt 6631 

2 Meadows 18649 

3 Gravel 2099 

4 Trees 3064 

5 Painted metal sheets 1345 

6 Bare Soil 5029 

7 Bitumen 1330 

8 Self-Blocking Bricks 3682 

9 Shadows 947 
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Even with the described limitation in terms of unknown wavelengths associated with the 
bands, it was possible to extract twelve endmembers from a subset of 200 x 200 pixel of the 
University of Pavia data.  

  
Figure 6-18. Endmembers extracted by the proposed model from University of Pavia Data 

 

 
Figure 6-19. Endmember cross-correlation (University of Pavia Dataset) 
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As depicted in the Figure 6-20 to Figure 6-22, the proposed model correctly separates the 
different classes, in accordance with the expected results from ground truth data. 

 

 
Figure 6-20. Abundances maps ( Endmembers 1 to 4) 

 

 
Figure 6-21. Abundances maps ( Endmembers 5 to 8) 
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Figure 6-22. Abundances maps ( Endmembers 9 to 12) 
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6.4 Association with existing library 

The last part of the code aims to associate the extracted spectral signatures with the existing 
materials library from JPL. Even if the code extracts and plots the signatures for the 
associated endmembers, according to the criteria described in paragraph 5.5, it seems quite 
evident that the current association technique does not provide the adequate accuracy and 
confidence.  
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Conclusions and Future Work 

7.1 Summary and Contributions 

This thesis presented a hybrid methodology for hyperspectral unmixing applied to data 
acquired by the Italian Space Agency's PRISMA satellite. The primary objective was to 
effectively decompose mixed pixels into constituent endmember spectra and their 
corresponding fractional abundances, leveraging both established geometric/statistical 
initialization techniques and advanced deep learning methods. 

The proposed workflow commenced with data preprocessing and band-wavelength 
association specific to PRISMA data. Endmember initialization was performed using a 
combination of Vertex Component Analysis (VCA), Principal Component Analysis (PCA), 
and N-FINDR to provide robust starting points for subsequent refinement. A Convolutional 
Neural Network (CNN) was then employed to further extract and refine these endmembers, 
utilizing its capability to learn complex spectral features. Abundance maps were 
subsequently estimated using the non-negative least squares (lsqnonneg) algorithm, ensuring 
physically meaningful results. Finally, an attempt was made to associate the extracted 
endmembers with known material spectra from the NASA Jet Propulsion Laboratory (JPL) 
spectral library using Spectral Angle Mapper (SAM) and Spectral Information Divergence 
(SID) metrics. 

The methodology successfully extracted distinct endmembers from the PRISMA dataset, as 
evidenced by the spectral signature plots and cross-correlation analysis. The corresponding 
abundance maps visually confirmed the spatial distribution of these endmembers, 
associating them with various ground features. Furthermore, the model's robustness was 
validated using the well-known Pavia University hyperspectral dataset, demonstrating its 
capability to effectively separate different land cover classes even without specific 
wavelength information for that sensor. 
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7.2 Advantages of the Proposed Method 

The implemented spectral unmixing pipeline offers several advantages: 

1. Robust Initialization: Utilizing multiple established techniques (VCA, PCA, N-
FINDR) for endmember initialization provides a more robust starting point for the CNN, 
potentially reducing sensitivity to the limitations of any single method ; 

2. Hybrid Approach: Combining traditional unsupervised methods with a deep learning 
(CNN) approach leverages the geometric interpretability of the former and the feature 
extraction power of the latter, potentially leading to more accurate endmember 
identification than either approach alone; 

3. Computational Efficiency: By operating on selected subsets of the hyperspectral data, 
the computational load is significantly reduced, enabling analysis on standard 
computing hardware within a reasonable timeframe. 

4. Demonstrated Generalizability: Validation on the Pavia University dataset suggests 
that the core unmixing logic (initialization + CNN refinement) is adaptable to different 
hyperspectral sensors and scenes, enhancing its potential utility. 

7.3 Challenges and Future Directions for Library Association 

While the core unmixing process demonstrated promising results, the final step of 
associating extracted endmembers with the JPL spectral library revealed limitations in 
accuracy using the current SAM and SID implementation. Achieving reliable and accurate 
matching between sensor-derived endmembers and library spectra remains a significant 
challenge due to factors like atmospheric interference, sensor noise, spectral variability 
within materials, and differences between laboratory measurements and real-world 
conditions. 

To enhance the accuracy of this association, several future research directions and 
hypotheses can be explored: 

1. Advanced Similarity Metrics: Move beyond SAM and SID. Explore metrics that are 
more sensitive to spectral shape and absorption feature characteristics, such as 
correlation coefficients, spectral derivative analysis, or metrics based on continuum 
removal; 

2. Library Optimization:  

o Contextual Filtering: Pre-filter the extensive JPL library based on the geographic 
context or expected land cover types within the PRISMA scene to reduce the search 
space and minimize spurious matches; 

o Spectral Resampling: Investigate more sophisticated methods for resampling 
library spectra to match PRISMA's specific band wavelengths and spectral response 
functions, potentially going beyond the spline interpolation currently used; 
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3. Feature-Based Matching: Instead of comparing entire spectra, focus on extracting key 
spectral features (e.g., position, depth, width of absorption features) from both the 
extracted endmembers and library spectra and perform matching in this feature space; 

4. Machine Learning for Association: Train a dedicated classification model (e.g., 
Support Vector Machine, tailored Neural Network) to map extracted endmember spectra 
to the most likely material class in the JPL library, potentially learning more complex 
relationships than simple distance metrics; 

5. Incorporating Spatial Context: Utilize the generated abundance maps. High 
confidence in a match could be assigned if an endmember consistently maps to spatial 
features expected to consist of a certain material (e.g., a water-like endmember 
predominantly appearing over water bodies); 

6. Addressing Spectral Variability: The JPL library typically contains representative 
single spectra. Develop methods to account for natural variability within material 
classes, perhaps by comparing extracted endmembers to statistical representations 
(mean, variance) of multiple library spectra for the same material or using spectral 
mixture analysis techniques within the library itself. 

7.4 Concluding Remarks 

This research successfully developed and validated a hybrid spectral unmixing workflow 
combining traditional initialization methods with a Convolutional Neural Network, 
demonstrating its effectiveness on PRISMA hyperspectral data. The approach benefits from 
robust initialization and the feature learning capabilities of CNNs while maintaining 
reasonable computational efficiency. While the core unmixing performed well, accurately 
associating the derived endmembers with standard spectral libraries remains an area 
requiring further investigation. The suggested future work, focusing on advanced similarity 
metrics, library optimization, improved atmospheric correction, and potentially machine 
learning-based association, offers promising avenues for significantly enhancing the 
reliability of material identification, thereby increasing the practical value of hyperspectral 
unmixing results derived from PRISMA and similar sensors. 
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Acronyms 

AE  Autoencoder 

ASI Italian Space Agency 

AVIRIS Airborne Visible/Infrared Imaging Spectrometer 

BOA Bottom Of Atmosphere 

CNN Convolutional Neural Network 

CNM National Multimission Centre (Centro Nazionale Multimissione) 

CO₂ Carbon Dioxide 

E  Endmembers (Mathematical notation) 

EM Electromagnetic 

EMR Electromagnetic Radiation 

EO-1 Earth Observing-1 (NASA Satellite) 

ESA European Space Agency 

FDS Flight Dynamics System 

FPA Focal Plane Array 

GCP Ground Control Points 

GIC Computational Intelligence Group (Group De Inteligencia Computacional) 

GS  Ground Segment 

GSD Ground Sample Distance 

HDF5 Hierarchical Data Format 5 

H₂O Water Vapor 

HSI Hyperspectral Imaging 

HyPSEO Hyperspectral Precursor of the Sentinels for Earth Observation 

ICU In-flight Calibration Unit 

IDHS Image Data Handling Segment/Center 

IR  Infrared 

JHM Joint Hyperspectral Mission 

JPL Jet Propulsion Laboratory 

KDP Key Data Parameters 
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L0  Level 0 (Data Processing Level) 

L1  Level 1 (Data Processing Level) 

L2B Level 2B (Data Processing Level) 

L2C Level 2C (Data Processing Level) 

L2D Level 2D (Data Processing Level) 

LED Light Emitting Diode 

LMM Linear Mixing Model 

MCC Mission Control Center 

ME Main Electronics 

MPS Mission Planning System 

MSE Mean Squared Error 

N-FINDR Endmember extraction algorithm based on simplex volume maximization 

NIR Near-Infrared 

NMM Nonlinear Mixing Model 

nm  nanometers 

OBDH On Board Data Handling 

O₂  Oxygen 

O₃  Ozone 

OH Optical Head 

PAN Panchromatic 

PCA Principal Component Analysis 

PDHT Payload Data Handling and Transmission 

PPI Pixel Purity Index 

PRISMA Hyperspectral Precursor of the Environmental Monitoring System 
(PRecursore IperSpettrale della Sistema di Monitoraggio Ambientale) 

ReLU Rectified Linear Unit 

ROSIS Reflective Optics System Imaging Spectrometer 

SAM Spectral Angle Mapper 

SCC Satellite Control Center 

SCS Satellite Control System 

SID Spectral Information Divergence 

SI  International System of Units (Sistema Internazionale) 

SNR Signal-to-Noise Ratio 
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SVM Support Vector Machine 

SWIR Short Wave Infrared 

TMA Three-Mirror Anastigmat 

TOA Top Of Atmosphere 

TT&C Telemetry, Tracking, and Command 

UTM Universal Transverse Mercator 

UV  Ultraviolet 

VCA Vertex Component Analysis 

VEGA European Advanced Generation Carrier Rocket (Vettore Europeo di 
Generazione Avanzata) 

VNIR Visible and Near Infrared 

W  Watts 
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