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Sommario

L'imaging iperspettrale (Hyperspectral Imaging - HSI) ¢ diventato uno strumento
inestimabile nell'osservazione della Terra, fornendo ricche informazioni spettrali attraverso
centinaia di bande strette e contigue. Questa capacita consente una caratterizzazione e
identificazione dettagliata dei materiali sulla superficie terrestre. Tuttavia, la risoluzione
spaziale dei sensori HSI satellitari, come PRISMA (PRecursore IperSpettrale della Missione
Applicativa) dell'Agenzia Spaziale Italiana (ASI), porta spesso ad avere pixel che
contengono una miscela di materiali diversi (pixel misti). Le tecniche di decomposizione
spettrale (spectral unmixing) mirano ad affrontare questa sfida scomponendo lo spettro
misurato di un pixel misto in una collezione di spettri puri costituenti (endmember) e le loro
corrispondenti abbondanze frazionali. Un accurato spectral unmixing ¢ cruciale per
numerose applicazioni, tra cui il monitoraggio ambientale, l'agricoltura di precisione,
l'esplorazione mineraria e la gestione dei disastri.

Questa tesi presenta lo sviluppo e la valutazione di una metodologia ibrida di spectral
unmixing progettata per 1 dati iperspettrali PRISMA, integrando approcci
geometrico/statistici tradizionali con tecniche di intelligenza artificiale. L'obiettivo primario
era creare un flusso di lavoro robusto ed efficiente, capace di identificare accuratamente gli
endmember e stimare le loro abbondanze da scene iperspettrali complesse.

La metodologia proposta inizia con il pre-processamento dei dati PRISMA, che include la
concatenazione delle bande VNIR e SWIR e l'associazione con le lunghezze d'onda
corrispondenti. Un aspetto chiave dell'approccio ¢ una robusta strategia di inizializzazione
degli endmember che impiega molteplici algoritmi consolidati: Vertex Component Analysis
(VCA), Principal Component Analysis (PCA) e N-FINDR. Questi metodi sfruttano diverse
proprieta geometriche e statistiche dei dati iperspettrali per identificare potenziali
endmember candidati. Gli endmember inizializzati servono come input per una Rete Neurale
Convoluzionale (Convolutional Neural Network - CNN), che viene addestrata per affinare
le firme spettrali degli endmember apprendendo complesse caratteristiche spettro-spaziali
da sottoinsiemi di dati. Questa componente di deep learning mira a migliorare l'accuratezza
e la discriminabilita degli endmember finali. A seguito dell'affinamento basato sulla CNN,
le abbondanze frazionali per ciascun endmember all'interno di ogni pixel vengono stimate
utilizzando 1'algoritmo dei minimi quadrati non negativi (non-negative least squares -
Isqnonneg), garantendo l'aderenza ai vincoli fisici (non negativita e somma unitaria
implicitamente gestite attraverso il processo). Infine, una fase sperimentale prevede il
tentativo di associare le firme spettrali degli endmember estratti con materiali noti,
confrontandoli con la libreria spettrale del Jet Propulsion Laboratory (JPL) della NASA
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utilizzando le metriche Spectral Angle Mapper (SAM) e Spectral Information Divergence
(SID).

L'efficacia della pipeline proposta ¢ stata dimostrata utilizzando un dataset iperspettrale
PRISMA. I risultati mostrano 1'estrazione riuscita di firme spettrali di endmember distinti e
la generazione delle corrispondenti mappe di abbondanza che rivelano pattern spaziali
significativi correlati alle caratteristiche del suolo. L'analisi di cross-correlazione ha
confermato l'unicita degli endmember identificati. Per valutare ulteriormente la robustezza
e la generalizzabilita del nucleo di unmixing (inizializzazione + CNN), il modello ¢ stato
testato anche sul dataset iperspettrale ampiamente utilizzato dell'Universita di Pavia,
acquisito dal sensore ROSIS. Nonostante le differenze nelle caratteristiche del sensore ¢ la
mancanza di informazioni specifiche sulla lunghezza d'onda per Pavia, il modello ha
separato con successo le principali classi di copertura del suolo presenti nella scena,
allineandosi bene con le informazioni di ground truth e dimostrando I'adattabilita
dell'approccio.

Sebbene il processo centrale di unmixing abbia prodotto risultati promettenti, 1'associazione
finale con la libreria spettrale JPL tramite SAM e SID ha evidenziato difficolta nel
raggiungere un'elevata confidenza e accuratezza. Questo passaggio rimane un'area che
richiede ulteriori indagini, potenzialmente coinvolgendo metriche di similarita piu
sofisticate, strategie di filtraggio della libreria o tecniche di confronto basate sulle
caratteristiche spettrali (feature-based matching).

In conclusione, questa tesi contribuisce a definire un nuovo framework ibrido per lo spectral
unmixing che sinergizza i punti di forza dei metodi di inizializzazione tradizionali e del deep
learning (CNN) per migliorare 'estrazione degli endmember dai dati PRISMA. Il metodo
dimostra robustezza ed efficienza, in particolare lavorando con sottoinsiemi di dati. Il lavoro
futuro dovrebbe concentrarsi sul miglioramento dell'affidabilita dell'associazione automatica
tra gli endmember estratti e le librerie spettrali di riferimento, al fine di massimizzare
l'applicabilita pratica dei risultati dell'unmixing per compiti quantitativi di telerilevamento.
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Abstract

Hyperspectral imaging (HSI) has become an invaluable tool in Earth observation, providing
rich spectral information across hundreds of narrow, contiguous bands. This capability
allows for detailed characterization and identification of materials on the Earth's surface.
However, the spatial resolution of satellite-based HSI sensors, such as the Italian Space
Agency's (ASI) PRISMA (PRecursore IperSpettrale della Missione Applicativa), often leads
to pixels containing a mixture of different materials (mixed pixels). Spectral unmixing
techniques aim to address this challenge by decomposing the measured spectrum of a mixed
pixel into a collection of constituent pure spectra (endmembers) and their corresponding
fractional abundances. Accurate spectral unmixing is crucial for numerous applications,
including environmental monitoring, precision agriculture, mineral exploration, and disaster
management.

This thesis presents the development and evaluation of a hybrid spectral unmixing
methodology designed for PRISMA hyperspectral data, integrating traditional
geometric/statistical approaches with artificial intelligence techniques. The primary
objective was to create a robust and efficient workflow capable of accurately identifying
endmembers and estimating their abundances from complex hyperspectral scenes.

The proposed methodology begins with preprocessing of the PRISMA data, involving the
concatenation of VNIR and SWIR bands and association with corresponding wavelengths.
A key aspect of the approach is a robust endmember initialization strategy employing
multiple established algorithms: Vertex Component Analysis (VCA), Principal Component
Analysis (PCA), and N-FINDR. These methods leverage different geometric and statistical
properties of the hyperspectral data to identify potential endmember candidates. The
initialized endmembers serve as input for a Convolutional Neural Network (CNN), which is
trained to refine the endmember signatures by learning complex spectral-spatial features
from data subsets. This deep learning component aims to improve the accuracy and
discriminability of the final endmembers. Following the CNN-based refinement, the
fractional abundances for each endmember within each pixel are estimated using the non-
negative least squares (Isqnonneg) algorithm, ensuring adherence to physical constraints
(non-negativity and sum-to-one implicitly managed through the process). Finally, an
experimental step involves attempting to associate the extracted endmember signatures with
known materials by comparing them against the NASA Jet Propulsion Laboratory (JPL)
spectral library using the Spectral Angle Mapper (SAM) and Spectral Information
Divergence (SID) metrics.

The effectiveness of the proposed pipeline was demonstrated using a PRISMA hyperspectral
dataset. Results show the successful extraction of distinct endmember signatures and the



generation of corresponding abundance maps that reveal meaningful spatial patterns related
to ground features. Cross-correlation analysis confirmed the uniqueness of the identified
endmembers. To further assess the robustness and generalizability of the unmixing core
(initialization + CNN), the model was also tested on the widely used Pavia University
hyperspectral dataset, acquired by the ROSIS sensor. Despite differences in sensor
characteristics and the lack of specific wavelength information for Pavia, the model
successfully separated the main land cover classes present in the scene, aligning well with
ground truth information and demonstrating the adaptability of the approach.

While the core unmixing process yielded promising results, the final association with the
JPL spectral library using SAM and SID highlighted challenges in achieving high confidence
and accuracy. This step remains an area requiring further investigation, potentially involving
more sophisticated similarity metrics, library filtering strategies, or feature-based matching
techniques.

To conclude, this thesis introduces a novel hybrid framework for spectral unmixing. By
synergizing the strengths of traditional initialization methods and deep learning (specifically
CNNs), this framework offers potentially improved endmember extraction from PRISMA
data. The method demonstrates robustness and efficiency, particularly when working with
data subsets. Future work should focus on enhancing the reliability of the automatic
association between extracted endmembers and reference spectral libraries to maximize the
practical applicability of the unmixing results for quantitative remote sensing tasks.

vi
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Chapter 1
Remote Sensing of Earth

Since the beginning of last century, when the humankind was able to fly and observe the
Earth from high altitudes, it was clear that the novel point of view could provide extremely
useful information for better understanding the world we live in. Aereal photography
provided the first means to quickly assess what was happening on ground, including natural
phenomena, troups movements and civilian and military facility usage. Additionally, with
the introduction of more sophisticated technologies, aereal photography became an
extremely useful tool for broader uses, such as 3D mapping of landscapes (using
stereoscopic imaging techniques), environmental and vegetation alanysis (using the first
color films) up to the introduction of digital sensors, when it became possible to detect and
analyse also different bands of the electromagnetic spectrum. With the “Space Age”, when
mankind was able to launch satellites in Earth orbit, the possibilities increased dramatically.
At the same time, however, technical and physical challenges increased as well, requiring to
address new problems.

1.1  Solar Radiation and Electromagnetic Spectrum

Before going more in detail about remote sensing, it is important to mention the physics that
stands behind it, in order to better understand what is the added value of using multiple bands
fo the solar radiation. Our star, the Sun, constantly emits energy in the form of
Electromagnetic radiation (EMR) across a wide range of wavelengths, collectively known
as the “electromagnetic spectrum”. Part of this spectrum can be directly observed with our
eyes, specifically with the retina, while the greates part of it is outside the visible spectrum.
Depending on the wavelength (L), the spectrum can be divided as follows:

1. Gamma Rays: A < 0.01 nanometers (nm)
X-rays: 0.01 <A <10 nm
Ultraviolet (UV): 10 <A <400 nm
Visible Light: 400 <A <700 nm
Infrared (IR): 700 nm <A < 1 mm
a. Near-infrared (NIR): 700 nm <A < 1.4 um

wok



Chapter 1 - Remote Sensing of Earth

b. Mid-infrared: 1.4 pm <A <3 pm. Used in thermal imaging.
c. Far-infrared: 3 pm <A <1000 pm
6. Microwaves: A=1mmto 1 m

7. Radio Waves: A = 1 m and longer

The Electromagnetic Spectrum

wavelength
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atmospheric window

emittance by Sun

- emittance by Earth

Radio Microwave Infrared Ultraviolet Xray Gamma Cme“
Radar
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Figure 1-1 The Electromagnetic Spetrum
Each of these bands interacts differently with matter and the atmosphere, providing unique
information.

1.2 Interaction between electromagnetic waves and matter

There are few basic ways electromagnetic (EM) waves interacts with matter: reflection,
diffraction, refraction, absorption and emission. Now let us describe each in some detail.

e Reflection: it occurs when EM waves bounce off a smooth surface (like mirrors).
The angle of incidence is equal to the angle of reflection.

e Diffuse reflection occurs on rough surfaces scattering the EM waves in all directions.

e Diffraction: it is defined as the bending of EM waves around obstacles or through
apertures, dependent on wavelength and obstacle size (e.g. light going through small
openings or around sharp edges will diffract).

e Refraction: it is defined as the bending of EM waves around obstacles or through
apertures when it passes from one medium to another of different optical density
causing it to bend.

e Absorption: Absorption occurs when matter absorbs waves energy, often transferring
it to heat. Darker objects absorb more visible light than light ones.
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e Emission: Any object releases some type of electromagnetic radiation the depends
on a temperature. Visual objects such as a star also radiates and gives off both visible
and infra-red radiation.

e Scattering: The redirection of light by particles smaller than its wavelength, is
responsible for phenomena like the blue color of the sky.

1.3 Interaction of Solar Radiation with the Atmosphere

In order to properly understand what part of the EM spectrum might be used for remote
sensing, it is important to describe how the Earth's atmosphere influences the transmission
of solar radiation. Key processes include absorption, scattering, and emission.

1.3.1 Atmospheric Absorption

The atmosphere absorbs specific wavelengths of solar radiation due to the presence of gases
such as oxygen (0O:), ozone (Os), carbon dioxide (CO-), and water vapor (H20). These gases
create absorption bands, which are regions of the spectrum where radiation is absorbed and
does not reach the Earth's surface. More specifically, Water Vapor and CO; absorb
significant amounts of IR radiation, influencing thermal remote sensing.
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Figure 1-2. Atmospheric Absorbtion

1.3.2 Atmospheric Scattering

As mentioned earlier, scattering affects the path of solar radiation as it passes through the
atmosphere. It can reduce the clarity of remote sensing images by introducing haze.
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1.4 Definitions

1.4.1 Radiance

Radiance is a measure of the radiant flux emitted, reflected, transmitted, or received by a
surface per unit solid angle and per unit projected area. It quantifies how much light travels
in a specific direction from a surface. The SI unit of radiance is watts per steradian per square
meter (W -sr~!-m™2). Radiance is useful for characterizing diffuse emission and
reflection of electromagnetic radiation. It indicates how bright an object appears from
different angles.

1.4.2 Spectral Radiance

Radiation emitted by a surface can be quantitatively characterized by the concept of spectral
radiance, denoted as I(4, 8, ¢, T). Spectral radiance represents the power density per unit
wavelength and per unit solid angle that traverses a unit surface area oriented orthogonally
to the considered direction.

Mathematically, spectral radiance is defined as:
dW((, 6, @, ) w
dA - cosO - dQ - dA (mz-sr-um>
e dW(A,0,9,T) is the infinitesimal power radiated by the surface at temperature T
through a differential surface element dA4,

1A 8,¢,T) = (1.1)

o dA is the infinitesimal surface area,

e fand @ are the angles defining the direction of radiation,

e dQ is the infinitesimal solid angle centered around the given direction,
e dA is the infinitesimal wavelength interval,

o The cosine term co s 6 accounts for the projection of the surface element in the
considered direction.

This definition encapsulates how radiative energy is distributed as a function of wavelength
and direction, making spectral radiance a fundamental quantity in radiative transfer, remote
sensing, and thermal emission analysis. For fixed values of A,0,¢,T the spectral radiance
depends solely on the intrinsic physical properties of the emitting object.
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1.4.3 Spectral Emissivity

Spectral emissivity is a dimensionless quantity that measures how efficiently an object emits
radiation at specific wavelengths compared to an ideal blackbody at the same temperature.
It varies between 0 (no emission) and 1 (perfect emission like a blackbody). This concept is
crucial for understanding thermal radiation properties.

If the thermodynamic temperature of a surface is known, the measurement of its spectral
radiance allows for the determination of its spectral emissivity, e; (A, 0, @). It is defined as:
I(A,0,9,T)

en(A,0,¢9) = “BOLT) (1.2)

where:
e I(A0,0,T) is the spectral radiance of the surface at temperature T,

e B(AT) is the spectral radiance of a black body at the same temperature, given by
Planck’s law.

The spectral emissivity provides crucial information about the material properties of a
surface, influencing applications in thermal imaging, remote sensing, and energy balance
studies. A perfect black body has e; = 1, while real materials exhibit values lower than
unity, depending on wavelength and surface characteristics.






Chapter 2
Hyperspectral Imaging

Hyperspectral imaging (HSI) is a powerful remote sensing technology that has
revolutionized the way we observe and analyze the Earth's surface. Unlike traditional
imaging techniques that capture data in a few broad spectral bands, hyperspectral imaging
collects information across hundreds of narrow, contiguous bands, providing a detailed
spectral signature for each pixel in an image. This capability allows for the precise
identification and characterization of materials, making hyperspectral imaging an invaluable
tool for a wide range of applications, from environmental monitoring to agriculture, mineral
exploration, and disaster management.

2.1 Origins of Hyperspectral Imaging

The concept of hyperspectral imaging has its roots in the early 20th century, with the
development of spectroscopy and the understanding of the electromagnetic spectrum.
Spectroscopy, the study of the interaction between matter and electromagnetic radiation,
provided the foundational knowledge necessary for the development of hyperspectral
imaging. Early spectroscopic techniques were limited to laboratory settings, where scientists
could analyze the spectral properties of materials in controlled environments.

The advent of remote sensing in the mid-twentieth century marked a significant milestone
in the evolution of hyperspectral imaging. Remote sensing involves the acquisition of
information about an object or phenomenon without making physical contact, typically using
sensors mounted on aircraft or satellites. The first remote sensing missions focused on
multispectral imaging, which captures data in a few broad spectral bands. While
multispectral imaging provided valuable information, it lacked the spectral resolution needed
for detailed material identification.

The development of hyperspectral imaging began in the 1980s, driven by advances in sensor
technology, computing power, and data processing algorithms. One of the pioneering
hyperspectral imaging systems was the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS), developed by NASA's Jet Propulsion Laboratory (JPL) in the late 1980s. AVIRIS
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was capable of capturing data in 224 contiguous spectral bands, providing unprecedented
spectral resolution for Earth observation.

The success of AVIRIS and other early hyperspectral imaging systems paved the way for
the development of spaceborne hyperspectral sensors. The launch of the Hyperion sensor on
NASA's EO-1 satellite in 2000 marked a significant milestone in the history of hyperspectral
imaging. Hyperion was the first spaceborne hyperspectral sensor capable of capturing data
in 220 spectral bands, demonstrating the potential of hyperspectral imaging for global Earth
observation.

2.2 Current Applications

Hyperspectral imaging has found applications in a wide range of fields, leveraging its ability
to provide detailed spectral information for each pixel in an image. Some of the key
applications include:

D PROGRANME OF THE
LA EUROFEAN LNION

CRISTAL

Copernicus Sentinel
Expansion Missions

Figure 2-1. Example of Hyperspectral mission application — ESA Copernicus

2.2.1 Environmental Monitoring

Hyperspectral imaging is widely used for monitoring and managing natural resources and
ecosystems. It can detect changes in vegetation health, water quality, and soil composition,
making it an invaluable tool for environmental assessment and conservation. For example,
hyperspectral data can be used to monitor deforestation, track the spread of invasive species,
and assess the impact of climate change on ecosystems.
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2.2.2 Agriculture

In agriculture, hyperspectral imaging is used for precision farming, crop health monitoring,
and yield prediction. By analyzing the spectral signatures of crops, farmers can detect
nutrient deficiencies, water stress, and disease outbreaks, allowing for targeted interventions
that optimize resource use and improve crop yields. Hyperspectral imaging also supports the
development of sustainable agricultural practices by reducing the need for chemical inputs
and minimizing environmental impact.

2.2.3 Mineral Exploration

Hyperspectral imaging is a powerful tool for mineral exploration, enabling the identification
of specific minerals based on their unique spectral signatures. This capability is particularly
valuable in remote and inaccessible regions, where traditional exploration methods may be
impractical. Hyperspectral data can be used to map mineral deposits, assess the potential for
resource extraction, and guide exploration efforts.

2.2.4 Disaster Management

Hyperspectral imaging plays a critical role in disaster management, providing timely and
accurate information for response and recovery efforts. In the aftermath of natural disasters
such as earthquakes, floods, and wildfires, hyperspectral data can be used to assess damage,
identify areas at risk, and guide emergency response efforts. For example, hyperspectral
imaging can detect changes in land surface temperature, helping to identify hotspots and
monitor the spread of wildfires.

2.2.5 Urban Planning and Infrastructure

Hyperspectral imaging is increasingly being used in urban planning and infrastructure
development. It can provide detailed information on land use, vegetation cover, and building
materials, supporting the development of sustainable and resilient cities. Hyperspectral data
can also be used to monitor the condition of infrastructure, such as roads, bridges, and
pipelines, enabling proactive maintenance and reducing the risk of failure.






Chapter 3
ASI’s PRISMA Satellite

The Italian Space Agency (ASI) has developed and launched a cutting-edge Earth
observation satellite named PRISMA (PRecursore IperSpettrale del Sistema di
Monitoraggio Ambientale). PRISMA represents a significant leap forward in hyperspectral
imaging capabilities, providing crucial data for a wide range of applications, from
environmental monitoring and disaster management to agriculture and security. This
document outlines the PRISMA mission, its technical characteristics, and its potential
impact.

3.1 The Mission

The PRISMA conceptual developments are the result of the HyPSEO project followed by a
collaboration between ASI and the Canadian Space Agency for a Phase-A study called JHM.
PRISMA has been launched on 22 March 2019 on board the VEGA rocket. PRISMA is a
scientific and demonstrative mission. It will play a significant role in the upcoming
international scenario of Earth Observation, both for scientific community and for end users,
thanks to the capability to acquire worldwide lot of data with a very high spectral resolution
and in a wide range of spectral wavelengths. PRISMA provides the capability to acquire,
downlink and archive images of all Hyperspectral/Panchromatic channels totaling 200,000
km? daily almost on the entire worldwide area, acquiring square earth tiles of 30km by 30km.
The combined hyperspectral and panchromatic products enable the capabilities of
recognition of the geometric characteristics of a scene and may provide detailed information
about the chemical composition of materials and objects on the Earth surface, giving
enormous impacts to remote sensing applications. The PRISMA system includes Ground
and Space segments. The PRISMA mission can operate in two modes, a primary mode and
a secondary mode. The primary mode of operation is the collection of hyperspectral and
panchromatic data from specific individual targets requested by end users. In the secondary
mode of operation, the mission will have an established ongoing ‘background’ task that will
acquire imagery to fill up the entire system resources availability.
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3.2 Space segment

The PRISMA space segment consists in a single small class spacecraft. The PRISMA
payload is a hyperspectral/panchromatic camera with VNIR and SWIR detectors. It consists
of an Imaging Spectrometer, able to acquire in a continuum of spectral bands ranging from
400 to 2505 nm (from 400nm to 700nm in VNIR and from 920nm to 2505nm in SWIR) with
30m of spatial resolution and a medium resolution Panchromatic Camera (PAN, from 400nm
to 700 nm) with 5m resolution. The PRISMA Hyperspectral sensor utilizes the prism to

obtain the dispersion of incoming radiation on a 2-D matrix detectors in order to acquire

several spectral bands of the same ground strip. The “instantaneous” spectral and spatial
dimensions (across track) of the spectral cube are given directly by the 2-D detectors, while

the “temporal” dimension (along track) is given by the satellite motion (pushbroom scanning
concept).

Dispersing Element { Prism }

~-71 OFF-NADIR

spalial Dimension ¥

INSTRUMENT

|

INSTRUMENT

Entrance St

Objective Aperture

Figure 3-1. Pushbroom scanning concept for recording reflected radiation from the Earth surface.
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3.2.1 Payload

The PRISMA Hyperspectral Payload, designed and developed by Leonardo, is a state-of-
the-art Electro-Optical instrument composed of a hyperspectral imager optically integrated
with a medium resolution panchromatic camera.

Figure 3-2. PRISMA Satellite

Table 3-1. Main characteristics of the PRISMA payload

Swath 30 Km

GSD Hyperspectral: 30 m / PAN: 5 m
VNIR: 400 — 1010 nm
(66 spectral bands)

Spectral SWIR: 920 — 2505 nm

Range (174 spectral bands)

PAN : 400 — 700 nm
VNIR: > 160:1 (>450:1 at 650nm)
SWIR: > 100:1 (>360:1 at 1550nm)

SNR PAN: >240:1
Spectral <14.5 nm
Width
The Payload architecture is composed of the two main subsystems:
. The Hyperspectral / Panchromatic Optical Head (OH)
. The Main Electronics (ME)

13
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The optical design is based on high transmittance optical assemblies, including a reflective
common telescope in Three-Mirror Anastigmat (TMA) configuration, a panchromatic
camera (700-900 nm), and two spectrometers operating in Visible and Near Infrared (VNIR)
and Short Wave Infrared (SWIR) regions, therefore covering the wavelength range between
400 and 2500 nm. Panchromatic (PAN) images are provided at higher spatial resolution in
order to allow for image fusion techniques (i.e. “pan sharpening”). The Optical Head
architecture is based on a common optical bench that accommodates the telescope on the
upper side and the imaging spectrometers and panchromatic camera on the lower one. The
common TMA telescope provides excellent optical quality with a minimum number of
optical elements. The imaging spectrometer is based on a prism solution, in order to obtain
high efficiency and low polarization sensitivity. The Payload is equipped with high
performance VNIR and SWIR Focal Plane Array (FPA) detectors, which operate at a
temperature around 188K (VNIR) and 189K (SWIR). The cooling is obtained by means of
a passive radiator facing the cold space. The configuration is designed in order to match a
detector array with a pixel size of 30 um for both VNIR and SWIR channels, and 6.5 pm for
the PAN. The detection chain involves three focal planes which are physically
accommodated on the optical bench.

Figure 3-3. The PRISMA sensor

The Optical Head has two apertures that give access to the acquisition chain, the Main Ports
and the Solar Ports. They are opened or closed using dedicated mechanisms. The Main Ports
is the main aperture used for all Earth Observation acquisitions and for some types of
Calibration acquisitions (i.e. Moon Calibration and External Flat Field Calibrations). These
acquisitions follow the main optical path. The Solar Port is only used for Sun Calibration.

The instruments is managed by a Main Electronics (ME) box, which also handles power
supply distribution and interfaces the Platform On Board Data Handling (OBDH) and

14
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Payload Data Handling and Transmission (PDHT) modules. The ME manages
telecommands and telemetries and channels the bit-stream carrying spectral images. It
includes a data compression board to handle the high data volume related to the large number
of supported spectral bands.

The Payload offers acquisition capabilities for Earth Observation in line with mission
requirements and programmable in terms of active channels (VNIR, SWIR and
Panchromatic), active bands and duration. Data acquired by the payload is transmitted to the
Ground Segment and processed, resulting in PRISMA products that will be delivered to the
end users, according to appropriate policies. Level 0 products carry raw scientific data and
also include instrument and satellite ancillary data. They populate the PRISMA mission data
catalogue. Level 1 products carry top-of-atmosphere radiometrically calibrated
hyperspectral data. The data set includes co-registered panchromatic data. Besides Earth
Observation capabilities the Payload offers a number of Calibration capabilities designed to
ensure the maintenance of its performance along its lifecycle. Calibration takes place by
means of the In-flight Calibration Unit (ICU) that allows the stimulation of the instrument
with internal sources with a known spectral radiance (i.e. a lamp and a LED) and with
radiation from Sun, through the Solar Port and a dedicated optical path that includes an
integrating sphere. Additional calibration methods supported by the Payload are vicarious
calibration, Moon calibration and External Flat Field calibration.

3.3 Ground segment

The PRISMA Ground Segment (GS) consists of the following main elements:

- MCC — Mission Control Center;
- SCC - Satellite Control Center;
- IDHS - Image Data Handling Segment/Center.

The MCC consists of a unique subsystem, the Mission Planning System (MPS). It is the G/S
element responsible for the scheduling of on board operations and for coordinating ground
activities, performing overall mission planning, allocating resources and solving conflicts.
The SCC includes the Satellite Control System (SCS), the Flight Dynamics System (FDS),
the S-band TT&C Station (TT&C) and the G/S Network (Communication infrastructure
connecting the PRISMA G/S centers and facilities). The IDHS is in charge of performing all
the chain from the Users requests management to the delivery of final products, including
reception of images data from the satellite and their processing. It includes different
elements:

. Centro Nazionale Multimissione (CNM);
. LO Processor;
. L1 Processor;
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. L2 Processor;
. Calibration facility;
. GCP DB.

The CNM provides all ground segment functions related to catalogue browsing, image
ordering from catalogue, standard products processing and product delivery. It includes the
X-band ground station used to receive the payload data downloaded by the PRISMA
satellite.

3.4 PRISMA Product

The Ground Segment data processing provides at Sensor Radiance (Level 1 products) or at
Surface Radiance obtained by applying atmospheric correction (L2B product) and
georeferencing/geolocation on reflectance data (L2C/2D products). Users can order new
acquisition or catalogue products containing the TOA (Top Of Atmosphere) radiometrically
and geometrically calibrated HYP and PAN radiance images and/or the BOA (Botton Of
Athmosphere) Geolocated or Geocoded Atmospherically corrected HYP and PAN radiance
or reflectance images. In detail the standard products which can be delivered to users, are:

. Level 0 (LO): Raw, uncalibrated sensor data with associated metadata. These
products include instrument and satellite ancillary data and populate the mission
data catalog. LO products are associated with Key Data Parameters (KDPs) for
further processing. LO products are not provided to the users.

. Level 1 (L1): Radiometrically corrected and calibrated top-of-atmosphere (TOA)
radiance data in physical units. L1 products include both hyperspectral and
panchromatic data that are coregistered. The L1 data is formatted as HDFS5 files
with separate groups for science data, ancillary data, global attributes, and
housekeeping information. Level 1 products are generated upon user request.

. Level 2B (L2B): At-surface radiance products in sensor geometry obtained by
applying atmospheric corrections to Level 1 data. This includes data corrected
for Rayleigh scattering, gaseous absorption, water vapor absorption, and aerosol
scattering. Level 2B products are delivered with an attached geocoding model.
L2B products are generated upon user request.

. Level 2C (L2C): Surface reflectance products with an attached geocoding model
that are obtained by applying geometric and atmospheric corrections to L1 data.
L2C products include an aerosol characterization product, water vapor map
product, and cloud characterization. L2C products are generated upon user
request.

. Level 2D (L2D): Geocoded surface reflectance products projected onto a
cartographic UTM reference system. L2D products are orthorectified, with or
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without the use of Ground Control Points (GCPs). L2D products are generated
upon user request.

3.5 Orbit and coverage

PRISMA nominal orbit is a frozen Sun-synchronous orbit with repeat cycle of 29 days (430
orbits). The orbit mean altitude is about 614.8 Km with an inclination of 97.851°. The Local
Time of Descending Node is 10.30 am. The orbit parameters are:

Table 3-2. PRISMA orbit parameters

PARAMETER VALUE
Semi-major axis [km] 6992.935
Mean Altitude [km] 614.8
Eccentricity 0. 0010566
Inclination [deg] 97.851
Argument of Perigee [deg] 90.0
Period [seconds] 5819.7
Rev/days 14.85
Repetition factor 14.83

The satellite will be able to pass over the same orbit within one month. Therefore, the orbit
mission is designed in order to guarantee a repeating cycle shorter than 1 month, in
particular, the baseline PRISMA orbit shall have a repeat time of 29 days.

The Primary area of interest considered includes almost all the main landmasses and is
characterized by the following coordinates:

. Latitude: from 70° N  to 70°S
. Longitude from 180°W to 180°E
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Figure 3-4. ASI’s PRISMA Mission Area of interest
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Chapter 4
Spectral Unmixing

4.1 Introduction to Hyperspectral Unmixing

Spectral unmixing is a fundamental technique in hyperspectral remote sensing, aimed at
decomposing mixed spectral signatures into a set of pure spectral components, known as
endmembers, and their corresponding fractional abundances. This process is essential for
accurately identifying materials on the Earth's surface when pixel resolution is insufficient
to isolate homogeneous materials. This is the case of PRISMA satellite, where every pixel
is 30 x 30 m wide, resulting in likely multiple endmembers per pixel.

The spectral unmixing problem can be formally expressed as follows. Given an observed
spectral vector x € RL, where L represents the number of spectral bands, the objective is to
determine a set of endmembers E = [ey, ,, ..., ey] € RE*M and corresponding abundance
fractions a € RM, such that:

x = Ea + n, where n represents the noise term. The constraints Y12, a; = 1 and 0 < a; <
1 for all i ensure physical interpretability of the abundances.

4.2 Linear vs. Nonlinear Spectral Unmixing

Spectral unmixing techniques can be broadly classified into linear and nonlinear methods.
The Linear Mixing Model (LMM) assumes that each pixel is a linear combination of

endmember spectra, weighted by their respective abundances:
M

X = z ae;+n (4.1)
i=1
LMM is widely used due to its mathematical simplicity and effectiveness in many real-world
scenarios. However, in cases where multiple scattering effects and nonlinear interactions
occur (e.g., in dense vegetation, urban areas, or water bodies), LMM fails to provide accurate
results.

In contrast, Nonlinear Mixing Models (NMMs) incorporate higher-order interactions
between endmembers. One common nonlinear model is the bilinear model:
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M M M
X =2aiei +ZZaiajei Oe+n (4.2)
i=1

i i=1 j>i

where O denotes element-wise multiplication. Other nonlinear models include radiative
transfer models and kernel-based approaches.

4.3 Unsupervised Endmember Extraction

The extraction of endmembers is a critical step in spectral unmixing and can be categorized
into supervised and unsupervised methods. In the following section we will describe some
of the most common methods, some of which will be used in the proposed code (Chapter 5).

4.3.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical method widely used for dimensionality
reduction and feature extraction in hyperspectral unmixing. It transforms high-dimensional
spectral data into a lower-dimensional space while preserving the maximum variance in the
dataset. By doing so, PCA enhances the separability of endmembers and reduces redundancy
in hyperspectral images.

Given a hyperspectral dataset represented as a matrix X € RY*N, where L is the number of

spectral bands and N is the number of pixels, the first step in PCA is to compute the mean-
centered data matrix:

X.=X-X (4.3)
where X represents the mean spectrum computed over all pixels. The covariance matrix C is
then obtained as:

1 T
C = XX (4.4)

PCA proceeds by solving the eigenvalue problem:
CV=VA (4.5)
where V is the matrix of eigenvectors (principal components) and A is the diagonal matrix

of eigenvalues, which indicate the amount of variance explained by each principal
component.

The principal components associated with the highest eigenvalues capture the most
significant spectral variance in the dataset. In the context of spectral unmixing, PCA is used
to:

1. Reduce Dimensionality: Selecting the top M principal components instead
of using all L bands improves computational efficiency.
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2. Enhance Endmember Separability: Endmembers tend to cluster along
specific principal components, making it easier to identify pure spectra.

3. Noise Reduction: By discarding components associated with small
eigenvalues, PCA eliminates noise while retaining essential spectral
features.

After applying PCA, a common approach for endmember extraction is to identify pixels that
exhibit extreme values in the transformed space, assuming that pure spectral signatures
correspond to these extremities.

4.3.2 Vertex Component Analysis (VCA)

A widely used approach that assumes endmembers are the vertices of a convex hull in
spectral space. VCA exploits the affine transformation property of LMM to iteratively
identify extreme spectral signatures. It is based on the assumption that the spectral signatures
of endmembers form a convex simplex in the spectral space. VCA exploits the affine
transformation property of the LMM to iteratively identify the most extreme spectral
signatures.

RN where L is the number of spectral bands and N is

Given a hyperspectral dataset X €
the number of pixels, VCA aims to identify a set of M endmembers
E = [e;, ey ...,em] € RPM such that:
M M
xizZaijei,with Za”: landa;; =0 (4.6)
j=1 j=1
The steps of the VCA algorithm are the following:

1. Whitening the Data: The hyperspectral data X is first transformed using Principal
Component Analysis (PCA) to reduce redundancy and enhance computational
efficiency. The data is projected onto a subspace of dimension M—1:

Xw = WX (4.7)
where W is the whitening transformation matrix derived from the covariance matrix of X.

2. Random Projections: VCA exploits the property that endmembers lie at the extrema of
the data cloud. A series of random projection vectors ry are used to iteratively identify
these extrema:

pl = XGri (4.8)
The pixel corresponding to the maximum projection value is selected as a candidate

endmember.

3. Deflation Process: Once an endmember is identified, the data is projected onto the
subspace orthogonal to the identified endmember to prevent reselection. Given an
identified endmember e;, the deflation process is performed as:

Xw = (I —ejef (4.9)
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Iterative Endmember Selection: Steps 2 and 3 are repeated until M endmembers have been
selected. The final set of endmembers is transformed back to the original spectral space using
the inverse whitening transformation:

E=WE, (4.10)
Between VCA’s advantages it is worth mentioning that it is usually computationally efficient
and it does not require prior knowledge of the number of endmembers. However, there are
also some limitations, including the fact that it assumes that pure endmembers exist within

the dataset, which may not always be true. Additionally, this method is sensitive to noise
and variations in spectral signatures.

4.3.3 Pixel Purity Index (PPI)

The Pixel Purity Index (PPI) is a widely used method for unsupervised endmember
extraction in hyperspectral unmixing. It is based on the assumption that pure spectral
signatures appear as extreme points in high-dimensional spectral space. By repeatedly
projecting spectral data onto randomly generated unit vectors, PPI identifies the pixels that
most frequently appear as extrema.

Given a hyperspectral dataset X € R**N, where L is the number of spectral bands and N is

the number of pixels, the PPI method follows these steps:
Data Projection: for each random unit vector ry, project all spectral vectors x; onto ry:
K
p® = xIry (4.11)

Extreme Point Identification: identify the pixels corresponding to the maximum and
minimum projection values:
(k)

Imax = argmaxp; ’, Imin = arg mjnp(k) (4.12)
i i

i
Repetition: repeat the process for K randomly chosen projection vectors. Maintain a counter
for each pixel that tracks the number of times it appears as an extreme point.

Thresholding: Select pixels that exceed a predefined threshold as candidate endmembers.
These are considered the purest spectral signatures in the dataset.

PPI is a simple and effective method for datasets with distinct pure pixels and it does not
require prior knowledge of the number of endmembers. However, it is usually
computationally expensive due to the need for a large number of projections and it is
sensitive to noise and outliers, which can affect the selection of pure pixels.
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434 N-FINDR

N-FINDR is a widely used unsupervised endmember extraction algorithm based on the
geometric principle that the simplex with the largest volume enclosing the data points in
spectral space corresponds to the optimal set of endmembers. It operates under the
assumption of a LMM, where each observed spectral pixel can be expressed as a convex
combination of endmembers.

Given a hyperspectral dataset X € RN, where L is the number of spectral bands and N is

the number of pixels, N-FINDR seeks to determine a set of M endmembers
E = [e,, e, ...,em] € RFM such that they maximize the volume of the simplex defined by
the endmembers.

The volume V of a simplex formed by M endmembers in an L-dimensional space is given
by:

V= idex( DI (4.13)
=———|det([e, — e, €35 —€;,...,em — € .
(M _ 1)! 2 1, *3 1 M 1

N-FINDR aims to iteratively refine the selection of endmembers to maximize this volume,
using the following steps:

1. initialize endmembers: randomly select M pixels from the dataset as an initial set of

endmembers;

2. volume calculation: compute the volume of the simplex formed by the current set of

endmembers using the determinant-based formula;

3. pixel substitution: for each candidate endmember position j, replace e; with every other

pixel in X and recompute the volume.

4. if a new pixel increases the simplex volume, update the endmember set with this new

pixel.

5. iterate until convergence: repeat step 3 until no further volume increase is observed.
N-FINDR is an efficient and deterministic method for identifying endmembers, that ensures
maximal separability of extracted endmembers. However, we can mention between its
limitations that it is sensitive to noise and outliers, as extreme values can dominate selection.
Additionally, it is computationally expensive for large datasets due to iterative volume
computations.

4.4 Supervised Endmember Extraction

In contrast to unsupervised methods, supervised approaches rely on reference spectral

libraries, ground truth data, or prior knowledge to guide the extraction process. These

include:

1. Spectral Angle Mapper (SAM): Measures the similarity between observed spectra and
reference endmembers using the spectral angle distance.
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2. Support Vector Machines (SVMs): Classify spectral data based on labeled training
samples, enabling robust endmember selection.

4.5 Advanced Spectral Unmixing Techniques

4.5.1 Autoencoders for Spectral Unmixing

Autoencoders (AEs) are neural network architectures designed for unsupervised feature
learning, particularly suited for hyperspectral unmixing. They consist of two primary
components: an encoder that compresses input data into a latent representation and a decoder
that reconstructs the original data from this compressed representation. The objective is to
learn an optimal transformation that captures the underlying spectral characteristics of the
data while reducing noise and redundancy.

Given an input spectral vector x € R, an autoencoder consists of an encoder function
fo: R > R® and a decoder function o R4 - RY, where d is the dimensionality of the latent
space, and 6, ¢ are the learned parameters. The encoding and decoding processes are defined
as:

z = fg(x) = o(Wex + be), X =gy (2z) = o(Wyz + by) (4.14)

where W, € RYL and Wy € RY%? are the weight matrices of the encoder and decoder,
respectively, b, € R%nd by € R’ are bias terms, ¢ is a non-linear activation function such
as ReLU or sigmoid. The loss function for training an autoencoder is typically the
reconstruction error, given by the mean squared error (MSE):

N
1
1O ¢) =3 |l — 2’ (4.15)
i=1

where N is the number of training samples.

For hyperspectral unmixing, the latent representation z is interpreted as the abundance vector
a, constrained such that a satisfies non-negativity and sum-to-one conditions. This can be
achieved using a softmax activation function:

e’

=M

a; 7
j=1€"

(4.16)
The endmember matrix E can be learned as part of the decoder weights, allowing the network
to extract representative spectral signatures directly from the data.

Autoencoders techniques are able to Learn non-linear feature representations, improving
unmixing in complex scenarios. Additionally, they can incorporate physical constraints like
sum-to-one and non-negativity. However, they require large datasets for training to avoid
overfitting, and they are computationally expensive compared to traditional linear methods.
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4.5.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) have emerged as powerful tools for hyperspectral
unmixing, particularly in scenarios where spatial dependencies between pixels provide
additional information. Unlike fully connected networks, CNNs exploit local patterns in
spectral data, making them particularly suited for extracting spectral-spatial features.

A CNN consists of multiple layers, including convolutional layers, activation functions,
pooling layers, and fully connected layers. The convolutional operation applied to an input
hyperspectral image X is given by:

W XD+ b® (4.17)

Q
mp,q“ti+p,j+q
1

M P
GEL DWW
m=1p=1q=
where:

Fig.) is the feature map at position (i, j) in layer /, W,,(lg,’q is the convolutional kernel of size

P x Q applied to input m, b® is the bias term, o is an activation function (e.g., ReLU or
sigmoid).

Following the convolutional layer, pooling layers are used to reduce dimensionality while
retaining critical spectral-spatial features:

O _ -1
F/ = rg%XFHP,Hq (4.18)

where max-pooling selects the maximum value in a given window p X g, improving
computational efficiency and robustness.

For spectral unmixing, CNNs are trained to extract spatial and spectral correlations to

improve endmember and abundance estimation. Given an input hyperspectral image X,
CNN s predict the abundance maps A by learning hierarchical representations:

A = f(X; 0) (4.19)

where f represents the CNN function parameterized by weights 6. The network is trained
using a loss function, such as the mean squared error (MSE):

N
1 -
L(O) =3 ) i — & (4.20)
i=1

Between the advantages of using CNNs we can mention the ability to capture spatial
dependencies, improving robustness in mixed-pixel scenarios. Additionally, CNNs can
model nonlinearity more effectively than traditional methods and they are able to reduce
spectral variability by leveraging spatial information. On the other hand, CNNs are
computationally expensive, requiring significant processing power.
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Chapter 5
Proposed Unmixing Code

The proposed unmixing code uses a mix of multiple techniques in order to obtain robust
solutions independently with respect to the selected scenarios. Additionally, the use of a
limited subset allows to reduce the computational time and obtain useful results in few hours
also using a consumer grade laptop. More in detail, the code starts importing the
hyperspectral image and associating the bands numbers with the PRISMA’s wavelength. In
the following part the actual unmixing process takes place, with the initialization of the
endmembers (using VCA, PCA and N-FINDR techniques), in order to provide robust inputs
to the Convolutional Neural Network (CNN). The network is trained and fine-tuned using
two randomly selected sub-sets. The last phase, before plotting results, associates the
computed endmembers with the library from NASA Jet Propulsion Laboratory (JPL), using
a mix of Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID)
techniques in order to select the most “similar” material from the library.

5.1 Data Preprocessing

The code starts by reading the PRISMA satellite data from an HDFS5 file. The data consists
of two cubes: VNIR (Visible and Near-Infrared, 66 bands) and SWIR (Short-Wave Infrared,
173 bands). These cubes are concatenated along the spectral dimension to form a single
hyperspectral data cube.

swirData = double(h5read(inputFile, swirPath));
vnirData = double(h5read(inputFile, vnirPath));

data = cat(2, vnirData, swirData);
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5.2 Band-Wavelength Association

The code reads an Excel file containing the band numbers and their corresponding
wavelengths. The wavelengths are sorted in ascending order, and the band numbers are
rearranged accordingly.

[num, txt, raw] = xlsread(excelFile);
band_numbers_VNIR = num(1:66, 1);

wavelengths_VNIR = num(1:66, 2);

band_numbers_SWIR = num(67:end, 1);

wavelengths_SWIR = num(67:end, 4);

band_numbers = [band_numbers_VNIR; band_numbers_SWIR];
wavelengths = [wavelengths_VNIR; wavelengths_SWIR];
[wavelengths_sorted, sortIdx] = sort(wavelengths);

band_numbers_sorted = band_numbers(sortIdx);

5.3 Hyperspectral Unmixing

5.3.1 Endmember Initialization

The code initializes endmembers using three techniques: N-FINDR, VCA, and PCA.

- N-FINDR: This algorithm finds the simplex of maximum volume that can be
inscribed within the data cloud. The vertices of this simplex are considered as
endmembers.

- VCA: Vertex Component Analysis is a geometric approach that projects the data
onto a subspace and then iteratively finds the vertices of the simplex.

- PCA: Principal Component Analysis reduces the dimensionality of the data by
projecting it onto the principal components. The endmembers are then extracted from
the reduced space.

endmembers_initl_nf = nf_findr(X1l', num_endmembers);

endmembers_initl_vca = vca(X1l', num_endmembers);

endmembers_initl_pca = pca_endmembers(X1l', num_endmembers);
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5.3.2 CNN for Endmember Extraction

A Convolutional Neural Network (CNN) is used to refine the endmembers. The CNN is
trained on a subset of the data, where the input is the spectral data and the output is the initial
abundance estimates. The CNN architecture can be described as follows:

- Input Layer: Accepts the spectral data reshaped into a 4D tensor.

- Convolutional Layer: Applies a 3x3 convolution with 16 filters.

- ReLU Activation: Introduces non-linearity.

- Fully Connected Layer: Maps the features to the number of endmembers.

- Regression Layer: Outputs the abundance estimates.

layers = [
imageInputLayer([1 1 size(X1, 2)1)
convolution2dLayer(3, 16, 'Padding', 'same')
relulLayer
fullyConnectedlLayer(num_endmembers)
regressionLayer];

ANANAN

The CNN is trained using the Adam optimizer with a learning rate of 1e™ for 500 epochs.

options = trainingOptions('adam',
'MaxEpochs', 500,
'MiniBatchSize', 32,
'InitiallLearnRate', 1le-3,
'Verbose', false,
'"Plots', 'training-progress');

netl = trainNetwork(Xl_cnn, Y1, layers, options);

ANRNRN

5.3.3 Abundance Estimation using Isqnonneg
The non-negative least squares (Isqnonneg) method is used to estimate the abundances of

the endmembers. This method solves the following optimization problem:

min |X — EA|3 subjectto A >0 (5.1)
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where (X) is the observed spectral data, (E) is the endmember matrix, and (A) is the
abundance matrix.

for i = 1l:size(X1, 1)
abundances_init1(i, :) = lsgnonneg(endmembers_initl, X1(i, :)')';

end

5.4 Spectral Library Import

The code imports a spectral library from JPL, which contains spectral signatures of various
materials. The library is read from text files, and the reflectance values are normalized.

files = dir(fullfile(libraryFolder, 'x.txt'));
for i = 1:length(files)
filename = fullfile(libraryFolder, files(i).name);
fileID = fopen(filename, 'r');
line = fgetl(fileID);
name = strtrim(strrep(line, 'Name: ', ''));

data

textscan(fileID, '%f %f', 'HeaderlLines', 21);
fclose(fileID);

reflectance_normalized = data{2} / 100;
library_spectra(i).name = name;
library_spectra(i).wavelength = data{l} * 1000;
library_spectra(i).reflectance = reflectance_normalized;

end
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5.5 Endmember Comparison

The extracted endmembers are compared with the spectral library using Spectral Angle
Mapper (SAM) and Spectral Information Divergence (SID).

- SAM: Measures the spectral similarity between two spectra by calculating the angle
between them in the spectral space.

S1-S
AM(s;, ;) = —1( L 2) 5.2
S (s1,8,) = cos 51115, (5.2)

- -SID: Measures the divergence between two probability distributions derived from
the spectra.

SID(s1, 52) = D(s1ls2) + D(s2[s1) (5.3)
where (D (s1]s3)) is the Kullback-Leibler divergence.

for i = 1l:num_endmembers
extracted = endmembers_original_space(:, 1i);
extracted_norm = extracted / norm(extracted);
for j = l:length(library_spectra)
library_interp = interpl(library_spectra(j).wavelength,
library_spectra(j).reflectance,
prisma_wavelengths, 'spline', ‘'extrap');
library_norm = library_interp / norm(library_interp);
dot_product = dot(extracted_norm, library_norm);
norm_product = norm(extracted_norm) * norm(library_norm);
if norm_product > 0

sam_values(i, j) = acos(max(-1, wmin(1, dot_product /
norm_product)));

else
sam_values(i, j) = NaN;
end
sid_values(i, i) = spectral_information_divergence(extracted,

library_interp);
end

end
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Chapter 6
Results

6.1 Identified Endmembers

The proposed code correctly extracted 12 different endmembers. Their spectral signatures
were plotted in terms of normalized reflectance vs. wavelength (Figure 6-1, Figure 6-2 and
Figure 6-3), as defined by PRISMA specification. In order to be sure that the extracted
endmembers were actually different between each other, the cross-correlation values were
calculated (Figure 6-4).
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Figure 6-1. Spectral signatures — Endmembers 1 to 4
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Endmember

Endmember

Figure 6-4. Endmembers’ spectra cross-correlations.
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6.2 Abundances

Following endmembers extraction, the relative abundances were plotted. Abundances maps
confirm visually that the identified endmembers are actually different, since their presence
on the ground might be associated with different structures, human-made features and
natural elements.
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Figure 6-13. Abundance map — Endmember 9
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6.3 Model validation

The limit of PRISMA data is the current lack of dedicated campaigns to cross-corelate
measures with ground truth data. In order to mitigate this limitation, the proposed model was
tested against other hyperspectral data, aiming to verify that it is able to isolate multiple
endmembers and consistently associate them to different classes.

Specifically, the model was tested against the Pavia University hyperspectral image acquired
by the ROSIS sensor during a flight campaign over Pavia, northern Italy. The data is publicly
available on Group De Inteligencia Computacional (GIC).

The Pavia university HSI has 103 spectral bands, and It contains 610 x 340 pixels, but
spectral samples of the image contain no information about the wavelengths. The geometric
resolution is 1.3 meters. The groundtruth of the HSI is differentiated into 9 classes.

Ground Truth

Figure 6-17. University of Pavia — Pancromatic (left) vs Hyperspectral classes (right)
Table 6-1. Groundtruth classes for the Pavia University scene and their respective samples number

# | Class Samples
1 | Asphalt 6631

2 | Meadows 18649

3 | Gravel 2099

4 | Trees 3064

5 | Painted metal sheets 1345

6 | Bare Soil 5029

7 | Bitumen 1330

8 | Self-Blocking Bricks | 3682

9 | Shadows 947
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Even with the described limitation in terms of unknown wavelengths associated with the
bands, it was possible to extract twelve endmembers from a subset of 200 x 200 pixel of the

University of Pavia data.
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As depicted in the Figure 6-20 to Figure 6-22, the proposed model correctly separates the
different classes, in accordance with the expected results from ground truth data.
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6.4 Association with existing library

The last part of the code aims to associate the extracted spectral signatures with the existing
materials library from JPL. Even if the code extracts and plots the signatures for the
associated endmembers, according to the criteria described in paragraph 5.5, it seems quite
evident that the current association technique does not provide the adequate accuracy and
confidence.
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Chapter 7
Conclusions and Future Work

7.1  Summary and Contributions

This thesis presented a hybrid methodology for hyperspectral unmixing applied to data
acquired by the Italian Space Agency's PRISMA satellite. The primary objective was to
effectively decompose mixed pixels into constituent endmember spectra and their
corresponding fractional abundances, leveraging both established geometric/statistical
initialization techniques and advanced deep learning methods.

The proposed workflow commenced with data preprocessing and band-wavelength
association specific to PRISMA data. Endmember initialization was performed using a
combination of Vertex Component Analysis (VCA), Principal Component Analysis (PCA),
and N-FINDR to provide robust starting points for subsequent refinement. A Convolutional
Neural Network (CNN) was then employed to further extract and refine these endmembers,
utilizing its capability to learn complex spectral features. Abundance maps were
subsequently estimated using the non-negative least squares (Isqnonneg) algorithm, ensuring
physically meaningful results. Finally, an attempt was made to associate the extracted
endmembers with known material spectra from the NASA Jet Propulsion Laboratory (JPL)
spectral library using Spectral Angle Mapper (SAM) and Spectral Information Divergence
(SID) metrics.

The methodology successfully extracted distinct endmembers from the PRISMA dataset, as
evidenced by the spectral signature plots and cross-correlation analysis. The corresponding
abundance maps visually confirmed the spatial distribution of these endmembers,
associating them with various ground features. Furthermore, the model's robustness was
validated using the well-known Pavia University hyperspectral dataset, demonstrating its
capability to effectively separate different land cover classes even without specific
wavelength information for that sensor.
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7.2  Advantages of the Proposed Method

The implemented spectral unmixing pipeline offers several advantages:

1. Robust Initialization: Utilizing multiple established techniques (VCA, PCA, N-
FINDR) for endmember initialization provides a more robust starting point for the CNN,
potentially reducing sensitivity to the limitations of any single method ;

2. Hybrid Approach: Combining traditional unsupervised methods with a deep learning
(CNN) approach leverages the geometric interpretability of the former and the feature
extraction power of the latter, potentially leading to more accurate endmember
identification than either approach alone;

3. Computational Efficiency: By operating on selected subsets of the hyperspectral data,
the computational load is significantly reduced, enabling analysis on standard
computing hardware within a reasonable timeframe.

4. Demonstrated Generalizability: Validation on the Pavia University dataset suggests
that the core unmixing logic (initialization + CNN refinement) is adaptable to different
hyperspectral sensors and scenes, enhancing its potential utility.

7.3 Challenges and Future Directions for Library Association

While the core unmixing process demonstrated promising results, the final step of
associating extracted endmembers with the JPL spectral library revealed limitations in
accuracy using the current SAM and SID implementation. Achieving reliable and accurate
matching between sensor-derived endmembers and library spectra remains a significant
challenge due to factors like atmospheric interference, sensor noise, spectral variability
within materials, and differences between laboratory measurements and real-world
conditions.

To enhance the accuracy of this association, several future research directions and
hypotheses can be explored:

1. Advanced Similarity Metrics: Move beyond SAM and SID. Explore metrics that are
more sensitive to spectral shape and absorption feature characteristics, such as
correlation coefficients, spectral derivative analysis, or metrics based on continuum
removal;

2. Library Optimization:

o Contextual Filtering: Pre-filter the extensive JPL library based on the geographic
context or expected land cover types within the PRISMA scene to reduce the search
space and minimize spurious matches;

o Spectral Resampling: Investigate more sophisticated methods for resampling
library spectra to match PRISMA's specific band wavelengths and spectral response
functions, potentially going beyond the spline interpolation currently used;
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3. Feature-Based Matching: Instead of comparing entire spectra, focus on extracting key
spectral features (e.g., position, depth, width of absorption features) from both the
extracted endmembers and library spectra and perform matching in this feature space;

4. Machine Learning for Association: Train a dedicated classification model (e.g.,
Support Vector Machine, tailored Neural Network) to map extracted endmember spectra
to the most likely material class in the JPL library, potentially learning more complex
relationships than simple distance metrics;

5. Incorporating Spatial Context: Utilize the generated abundance maps. High
confidence in a match could be assigned if an endmember consistently maps to spatial
features expected to consist of a certain material (e.g., a water-like endmember
predominantly appearing over water bodies);

6. Addressing Spectral Variability: The JPL library typically contains representative
single spectra. Develop methods to account for natural variability within material
classes, perhaps by comparing extracted endmembers to statistical representations
(mean, variance) of multiple library spectra for the same material or using spectral
mixture analysis techniques within the library itself.

7.4 Concluding Remarks

This research successfully developed and validated a hybrid spectral unmixing workflow
combining traditional initialization methods with a Convolutional Neural Network,
demonstrating its effectiveness on PRISMA hyperspectral data. The approach benefits from
robust initialization and the feature learmning capabilities of CNNs while maintaining
reasonable computational efficiency. While the core unmixing performed well, accurately
associating the derived endmembers with standard spectral libraries remains an area
requiring further investigation. The suggested future work, focusing on advanced similarity
metrics, library optimization, improved atmospheric correction, and potentially machine
learning-based association, offers promising avenues for significantly enhancing the
reliability of material identification, thereby increasing the practical value of hyperspectral
unmixing results derived from PRISMA and similar sensors.
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Acronyms

AE
ASI
AVIRIS
BOA
CNN
CNM
CO:

E

EM
EMR
EO-1
ESA
FDS
FPA
GCP
GIC

GS
GSD
HDF5
H.0
HSI
HyPSEO
ICU
IDHS
IR
JHM
JPL
KDP

Autoencoder

Italian Space Agency

Airborne Visible/Infrared Imaging Spectrometer

Bottom Of Atmosphere

Convolutional Neural Network

National Multimission Centre (Centro Nazionale Multimissione)
Carbon Dioxide

Endmembers (Mathematical notation)

Electromagnetic

Electromagnetic Radiation

Earth Observing-1 (NASA Satellite)

European Space Agency

Flight Dynamics System

Focal Plane Array

Ground Control Points

Computational Intelligence Group (Group De Inteligencia Computacional)
Ground Segment

Ground Sample Distance

Hierarchical Data Format 5

Water Vapor

Hyperspectral Imaging

Hyperspectral Precursor of the Sentinels for Earth Observation
In-flight Calibration Unit

Image Data Handling Segment/Center

Infrared

Joint Hyperspectral Mission

Jet Propulsion Laboratory

Key Data Parameters
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Acronyms

LO Level 0 (Data Processing Level)
L1 Level 1 (Data Processing Level)
L2B Level 2B (Data Processing Level)
L2C Level 2C (Data Processing Level)
L2D Level 2D (Data Processing Level)
LED Light Emitting Diode

LMM Linear Mixing Model

MCC Mission Control Center

ME Main Electronics

MPS Mission Planning System

MSE Mean Squared Error

N-FINDR Endmember extraction algorithm based on simplex volume maximization
NIR Near-Infrared

NMM  Nonlinear Mixing Model

nm nanometers

OBDH  On Board Data Handling

0: Oxygen
0s Ozone
OH Optical Head

PAN Panchromatic

PCA Principal Component Analysis

PDHT  Payload Data Handling and Transmission
PPI Pixel Purity Index

PRISMA Hyperspectral Precursor of the Environmental Monitoring System
(PRecursore IperSpettrale della Sistema di Monitoraggio Ambientale)

ReLU Rectified Linear Unit
ROSIS  Reflective Optics System Imaging Spectrometer
SAM Spectral Angle Mapper

SCC Satellite Control Center

SCS Satellite Control System

SID Spectral Information Divergence

SI International System of Units (Sistema Internazionale)

SNR Signal-to-Noise Ratio

54



Acronyms

SVM Support Vector Machine

SWIR  Short Wave Infrared

TMA Three-Mirror Anastigmat

TOA Top Of Atmosphere

TT&C  Telemetry, Tracking, and Command
UTM Universal Transverse Mercator

uv Ultraviolet

VCA Vertex Component Analysis

VEGA  European Advanced Generation Carrier Rocket (Vettore Europeo di

Generazione Avanzata)
VNIR Visible and Near Infrared
\%\Y% Watts
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